Alberto Ghiribaldi

Learn More
Asynchronous networks-on-chip (NoCs) are an appealing solution to tackle the synchronization challenge in modern multicore systems through the implementation of a GALS paradigm. However, they have found only limited applicability so far due to two main reasons: the lack of proper design tool flows as well as their significant area footprint over their(More)
This work proposes a flexible and modular solution for nonintrusive tracing and debugging of software on embedded SoC platforms. It utilizes a separate, dedicated Network-on-Chip (NoC) interconnect with a hierarchical unidirectional ring topology to connect a multitude of monitoring devices. The devices are controlled via a debugger attached to the NoC.(More)
—Many crossbenchmarking results reported in the open literature raise optimistic expectations on the use of optical networks-on-chip (ONoCs) for high-performance and low-power on-chip communication. However, most of those previous works ultimately fail to make a compelling case for chip-level nanopho-tonic NoCs, especially for the lack of aggressive(More)
Networks-on-chip need to survive to manufacturing faults in order to sustain yield. An effective testing and configuration strategy however implies two opposite requirements. One one hand, a fast and scalable built-in self-testing and self-diagnosis procedure has to be carried out concurrently at NoC switches. On the other hand, programming the NoC routing(More)
—Many crossbenchmarking results reported in the open literature provide optimistic expectations on the use of optical networks-on-chip (ONoCs) for high-performance and low-power on-chip communication in future manycore systems. The goal of this paper is to highlight key methodological steps for a realistic assessment of the emerging nanophotonic technology.(More)
  • 1