Alberto Civetta

Learn More
Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae,(More)
A large portion of the annotated genes in Drosophila melanogaster show sex-biased expression, indicating that sex and reproduction-related genes (SRR genes) represent an appreciable component of the genome. Previous studies, in which subsets of genes were compared among few Drosophila species, have found that SRR genes exhibit unusual evolutionary patterns.(More)
The possible association between gonadal protein divergence and postzygotic reproductive isolation was investigated among species of the Drosophila melanogaster and D. virilis groups. Protein divergence was scored by high-resolution two-dimensional electrophoresis (2DE). Close to 500 protein spots from gonadal tissues (testis and ovary) and nongonadal(More)
Reproductive isolation and speciation can result from the establishment of either premating or postmating barriers that restrict gene flow between populations. Recent studies of speciation have been dominated by a molecular approach to dissect the genetic basis of hybrid male sterility, a specific form of postmating reproductive isolation. However,(More)
  • A Civetta, A G Clark
  • Proceedings of the National Academy of Sciences…
  • 2000
Adaptations in one sex may impair fitness in the opposite sex. Experiments with Drosophila melanogaster have shown that seminal fluid from the male accessory gland triggers a series of postmating responses in the female, including increased egg laying rate and lower remating propensity, but that accessory gland proteins also increase female death rate.(More)
Hybrid males resulting from crosses between closely related species of Drosophila are sterile. The F1 hybrid sterility phenotype is mainly due to defects occurring during late stages of development that relate to sperm individualization, and so genes controlling sperm development may have been subjected to selective diversification between species. It is(More)
Recent experiments with Drosophila have demonstrated that the success of sperm in multiply mated females depends on the genotype of both the male and the female. To further characterize the distinction between male and female roles in sperm success, we scored variation in both sexes in sperm competitive ability among a set of chromosome replacement lines(More)
The progeny of Drosophila females doubly-mated to males from the same and a closely related species are mostly sired by conspecific males. We examined the genetic basis for conspecific mating preference and sperm precedence by using 186 Drosophila lines in which random chromosomal fragments of D. sechellia were introgressed into D. simulans. Sperm(More)
Hybrid male sterility is a common outcome of crosses between different species. Gene expression studies have found that a number of spermatogenesis genes are differentially expressed in sterile hybrid males, compared with parental species. Late-stage sperm development genes are particularly likely to be misexpressed, with fewer early-stage genes affected.(More)
Phenotypic divergence in the male reproductive system (genitalia and gonads) between species of the Drosophila melanogaster complex and their hybrids was quantified to decipher the role of these traits in species differentiation and speciation. Internal as well as external, sexual and nonsexual traits were analyzed with respect to genetic variation and(More)