Alberto Bramati

Learn More
A quantum fluid passing an obstacle behaves differently from a classical one. When the flow is slow enough, the quantum gas enters a superfluid regime, and neither whirlpools nor waves form around the obstacle. For higher flow velocities, it has been predicted that the perturbation induced by the defect gives rise to the turbulent emission of quantized(More)
Exciton-polaritons are light-matter mixed states interacting via their exciton fraction. They can be excited, manipulated, and detected using all the versatile techniques of modern optics. An exciton-polariton gas is therefore a unique platform to study out-of-equilibrium interacting quantum fluids. In this work, we report the formation of a ring-shaped(More)
We present an experimental demonstration of both quadrature and polarization entanglement generated via the interaction between a coherent linearly polarized field and cold atoms in a high finesse optical cavity. The nonlinear atom-field interaction produces two squeezed modes with orthogonal polarizations which are used to generate a pair of nonseparable(More)
Although optical technology provides the best solution for the transmission of information, all-optical devices must satisfy several qualitative criteria to be used as logic elements. In particular, cascadability is difficult to obtain in optical systems, and it is assured only if the output of one stage is in the correct form to drive the input of the next(More)
Blinking and single-photon emission can be tailored in CdSe/CdS core/shell colloidal dot-in-rods. By increasing the shell thickness it is possible to obtain almost non-blinking nanocrystals, while the shell length can be used to control single-photon emission probability.
The generation of squeezed and entangled light fields is a crucial ingredient for the implementation of quantum information protocols. In this context, semiconductor materials offer a strong potential for the implementation of on-chip devices operating at the quantum level. Here we demonstrate a novel source of continuous variable squeezed light in(More)
The optimization of H1 photonic crystal cavities for applications in the visible spectral range is reported, with the goal to obtain a versatile photonic platform to explore strongly and weakly coupled systems. The resonators have been realized in silicon nitride and weakly coupled to both organic (fluorophores) and inorganic (colloidal nanocrystals)(More)
Microcavity polaritons are two-dimensional bosonic fluids with strong nonlinearities, composed of coupled photonic and electronic excitations. In their condensed form, they display quantum hydrodynamic features similar to atomic Bose-Einstein condensates, such as long-range coherence, superfluidity and quantized vorticity. Here we report the unique(More)
A remarkable feature of exciton-polaritons is the strongly spin-dependent polariton-polariton interaction, which has been predicted to result in the formation of spin rings in real space [Shelykh, Phys. Rev. Lett. 100, 116401 (2008)]. Here we experimentally demonstrate the spin bistability of exciton polaritons in an InGaAs-based semiconductor microcavity(More)
We report the experimental generation of squeezed light at 852 nm, locked on the Cesium D(2) line. 50% of noise reduction down to 50 kHz has been obtained with a doubly resonant optical parametric oscillator operating below threshold, using a periodically-poled KTP crystal. This light is directly utilizable with Cesium atomic ensembles for quantum(More)