Alberto Bottino

Learn More
Critical physical issues can be specifically tackled with the global full-f gyrokinetic code GYSELA. Three main results are presented. First, the self-consistent treatment of equilibrium and fluctuations highlights the competition between two compensation mechanisms for the curvature driven vertical charge separation, namely, parallel flow and polarization.(More)
A global plasma turbulence simulation code, ORB5, is presented. It solves the gyrokinetic electrostatic equations including zonal flows in axisymmetric magnetic geometry. The present version of the code assumes a Boltzmann electron response on magnetic surfaces. It uses a Particle-In-Cell (PIC), δf scheme, 3D cubic B-splines finite elements for the field(More)
The scaling of turbulence-driven heat transport with system size in magnetically confined plasmas is reexamined using first-principles based numerical simulations. Two very different numerical methods are applied to this problem, in order to resolve a long-standing quantitative disagreement, which may have arisen due to inconsistencies in the geometrical(More)
We discuss to which extent the present experiments of direct search for WIMPs, when interpreted in terms of relic neutralinos, probe interesting regions of the supersymmetric parameter space, which are also being progressively explored at accelerators. Our analysis is performed in a number of different supersymmetric schemes. We derive the relevant(More)
For support of the world-wide ITER (International Thermonuclear Experimental Reactor) project [1], large scale numerical simulations will be a necessity. Plasma turbulence simulations play a key role for the design, construction and optimization of the necessary fusion devices. The simulations will be so compute and memory intensive that applications must(More)
Permission to make digital or hard copies of portions of this work for personal or classroom use is granted provided that the copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise requires prior specific permission by the publisher mentioned above.(More)
—The particle-in-cell code ORB5 is a global gyroki-netic turbulence simulation code in tokamak geometry. solves the gyrokinetic equations in the whole plasma core, including the magnetic axis. A field-aligned filtering procedure and sophisticated noise-control and heating operators allow for accurate simulations. Recently, the code ORB5 has been extended to(More)
Highly variable flux surface averaged heat fluxes are resolved in gyrokinetic simulations of ion temperature gradient ͑ITG͒ turbulence, even in large systems. Radially propagating fronts or avalanches are also seen. Their propagation lengths in gyroradii and relative amplitude remain constant as simulation size is increased, so the avalanches appear to(More)