Learn More
Introduction • The primary focus of designers of computing systems and the industry has been on the improvement of the system performance. • According to this objective the performance has been steadily growing driven by more efficient system design and increasing density of the components described by Moore's law [1]. • Although the performance per watt(More)
Traditionally, the primary performance goal of computer systems has focused on reducing the execution time of applications while increasing throughput. This performance goal has been mostly achieved by the development of high-density computer systems. As witnessed recently, these systems provide very powerful processing capability and capacity. They often(More)
ÐLoad-balancing problems arise in many applications, but, most importantly, they play a special role in the operation of parallel and distributed computing systems. Load-balancing deals with partitioning a program into smaller tasks that can be executed concurrently and mapping each of these tasks to a computational resource such a processor (e.g., in a(More)
ÐTask scheduling is essential for the proper functioning of parallel processor systems. Scheduling of tasks onto networks of parallel processors is an interesting problem that is well-defined and documented in the literature. However, most of the available techniques are based on heuristics that solve certain instances of the scheduling problem very(More)
The energy consumption of under-utilized resources, particularly in a cloud environment, accounts for a substantial amount of the actual energy use. Inherently, a resource allocation strategy that takes into account resource utilization would lead to a better energy efficiency; this, in clouds, extends further with virtualization technologies in that tasks(More)
Jobs on high-performance computing systems are deployed mostly with the sole goal of minimizing completion times. This performance demand has been satisfied without paying much attention to power/energy consumption. Consequently, that has become a major concern in high-performance computing systems. In this paper, we address the problem of scheduling(More)
The energy consumption issue in distributed computing systems has become quite critical due to environmental concerns. In response to this, many energy-aware scheduling algorithms have been developed primarily by using the dynamic voltage-frequency scaling (DVFS) capability incorporated in recent commodity processors. The majority of these algorithms(More)
—In this paper, we present a novel approach to designing cellular automata-based multiprocessor scheduling algorithms in which extracting knowledge about the scheduling process occurs. This knowledge can potentially be used while solving new instances of the scheduling problem. We consider the simplest case when a multiprocessor system is limited to(More)