Learn More
Small nucleolar RNAs (snoRNAs) play important roles in ribosomal RNA metabolism. In Saccharomyces cerevisiae, box C/D snoRNAs are synthesized from excised introns, polycistronic precursors, or independent transcription units. Previous studies have shown that only a few independently transcribed box C/D snoRNAs are processed at their 5' end. Here we describe(More)
Tight regulation of the expression of mRNAs encoding iron uptake proteins is essential to control iron homeostasis and avoid intracellular iron toxicity. We show that many mRNAs encoding iron uptake or iron mobilization proteins are expressed in iron-replete conditions in the absence of the S. cerevisiae RNase III ortholog Rnt1p or of the nuclear exosome(More)
The strain designated Chlamydia trachomatis serovar that was used for experiments in this paper is Chlamydia muridarum, a species closely related to C. trachomatis (and formerly termed the Mouse Pneumonitis strain of C. trachomatis. [corrected]. The obligate intracellular pathogen Chlamydia trachomatis replicates within a membrane-bound inclusion that(More)
A complete description of the transcriptome of an organism is crucial for a comprehensive understanding of how it functions and how its transcriptional networks are controlled, and may provide insights into the organism's evolution. Despite the status of Saccharomyces cerevisiae as arguably the most well-studied model eukaryote, we still do not have a full(More)
O-linked N-acetyl-β-d-glucosamine (O-GlcNAc) is a ubiquitous and dynamic post-translational modification known to modify over 3,000 nuclear, cytoplasmic, and mitochondrial eukaryotic proteins. Addition of O-GlcNAc to proteins is catalyzed by the O-GlcNAc transferase and is removed by a neutral-N-acetyl-β-glucosaminidase (O-GlcNAcase). O-GlcNAc is thought to(More)
Zinc is an essential cofactor of all major eukaryotic RNA polymerases. How the activity of these enzymes is coordinated or regulated according to cellular zinc levels is largely unknown. Here we show that the stability of RNA polymerase I (RNAPI) is tightly coupled to zinc availability in vivo. In zinc deficiency, RNAPI is specifically degraded by(More)
Isoforms of importin-α have been identified in insect and human cells, and cross-linking experiments suggest that at least one isoform in each species participates in the targeting of integral membrane proteins to the inner nuclear membrane (INM). To directly test this hypothesis, an assay was developed using Saccharomyces cerevisiae. The data show that(More)
Neuronal cargos are differentially targeted to either axons or dendrites, and this polarized cargo targeting critically depends on the interaction between microtubules and molecular motors. From a forward mutagenesis screen, we identified a gain-of-function mutation in the C. elegans α-tubulin gene mec-12 that triggered synaptic vesicle mistargeting,(More)
A ratiometric fluorescent probe based on a Cd(2+)-ACAQ complex was designed and demonstrated for the chemo- and enantioselective detection of cysteine in 99:1 buffered HEPES:ACN solutions. Under the measuring conditions, the sensor demonstrates high selectivity toward Cys against Hcy and GSH, and an enantioselectivity of 3.35 can be achieved for antipodal(More)
Neurons remodel their connectivity in response to various insults, including microtubule disruption. How neurons sense microtubule disassembly and mount remodeling responses by altering genetic programs in the soma are not well defined. Here we show that in response to microtubule disassembly, the Caenorhabditis elegans PLM neuron remodels by retracting its(More)