Learn More
Implementing new operating systems is tedious, costly, and often impractical except for large projects. The Flux OSKit addresses this problem in a novel way by providing clean, well-documented OS components designed to be reused in a wide variety of other environments , rather than defining a new OS structure. The OSKit uses unconventional techniques to(More)
Carbon Nanotube Field-Effect Transistors (CNFETs) can potentially provide significant energy-delay-product benefits compared to silicon CMOS. However, CNFET circuits are subject to several sources of imperfections. These imperfections lead to incorrect logic functionality and substantial circuit performance variations. Processing techniques alone are(More)
Spatiotemporal patterns of gene expression are fundamental to every developmental program. The resulting macroscopic domains have been mainly characterized by their levels of gene products. However, the establishment of such patterns results from differences in the dynamics of microscopic events in individual cells such as transcription. It is unclear how(More)
Now completing its first year, the High-Performance Knowledge Bases Project promotes technology for developing very large, flexible, and reusable knowledge bases. The project is supported by the Defense Advanced Research Projects Agency and includes more than 15 contractors in universities , research laboratories, and companies. The evaluation of the(More)
Carbon Nanotube Field-Effect Transistors (CNFETs) show promise as extensions to silicon-CMOS. Ideal CNFET circuits can potentially provide 20X Energy-Delay-Product benefits over silicon-CMOS at the 16 nm technology node. However, several challenges must be overcome before such performance benefits can be experimentally realized. In this paper, we present a(More)
Carbon Nanotubes (CNTs) are grown using chemical synthesis, and the exact positioning and chirality of CNTs are very difficult to control. As a result, "small-width" Carbon Nanotube Field-Effect Transistors (CNFETs) can have a high probability of containing no semiconducting CNTs, resulting in CNFET failures. Upsizing these vulnerable small-width CNFETs is(More)
Massive aligned carbon nanotubes hold great potential but also face significant integration/assembly challenges for future beyond-silicon nanoelectronics. We report a wafer-scale processing of aligned nanotube devices and integrated circuits, including progress on essential technological components such as wafer-scale synthesis of aligned nanotubes,(More)