Albert J Saubermann

Learn More
Electron probe x-ray microanalysis (EPMA) was used to measure water content (percent water) and dry weight elemental concentrations (in millimoles per kilogram) of Na, K, Cl, and Ca in axoplasm and mitochondria of rat optic and tibial nerve myelinated axons. Myelin and cytoplasm of glial cells were also analyzed. Each anatomical compartment exhibited(More)
Electron probe X-ray microanalysis was used to determine whether experimental acrylamide (ACR) neuropathy involves deregulation of subcellular elements (Na, P, S, Cl, K, Ca and Mg) and water in Schwann cells and small, medium and large diameter myelinated axons of rat sciatic nerve. Results show that in proximal but not distal sciatic nerve, ACR treatment(More)
Accumulating evidence suggests that alterations in Na, Ca, K, and other biologically relevant elements play a role in the mechanism of cell injury. The pathogenesis of experimental diabetic neuropathy is unknown but might include changes in the distribution of these elements in morphological compartments. In this study, this possibility was examined via(More)
X-ray microprobe analysis was used to determine the effects of axotomy on distribution and concentration (millimoles of element per kilogram dry weight) of Na, P, Cl, K, and Ca in frozen, unfixed sections of rat sciatic nerve. Elemental concentrations were measured in axoplasm, mitochondria, and myelin at 8, 16, and 48 h after transection in small-,(More)
The mechanism by which acrylamide (ACR) produces distal axonopathy in humans and laboratory animals is unknown. The possibility that this neuropathy involves deregulation of elements and water in rat peripheral nerve has been investigated. Electron probe X-ray microanalysis was used to measure percentages of water and concentrations (mmol element/kg dry or(More)
X-ray microanalysis of frozen-hydrated tissue sections permits direct quantitative analysis of diffusible elements in defined cellular compartments. Because the sections are hydrated, elemental concentrations can be defined as wet-weight mass fractions. Use of these techniques should also permit determination of water fraction in cellular compartments.(More)
Effects of serotonin (5-HT) and carbachol on Rb uptake (used as a K marker) in leech neuron and glia were studied by electron probe microanalysis (EPMA). Hirudo medicinalis ganglia were perfused 60 s in 4 mM Rb substituted normal leech Ringer's with and without 5-HT (dosage range 5-500 microM) or carbachol (range 10-1000 microM), quench frozen(More)
The electrolyte and water content of cellular and interstitial compartments in the renal papilla of the rat was determined by x-ray microanalysis of frozen-hydrated tissue sections. Papillae from rats on ad libitum water were rapidly frozen in a slush of Freon 12, and sectioned in a cryomicrotome at -30 to -40 degrees C. Frozen 0.5-micrometer sections were(More)
New specimen handling and analytic techniques for the application of x-ray microanalysis to studies of cell and organ biology have been recently described (Saubermann et al., 1981, J. Cell Biol. 88:257-267). Based on these techniques, absolute quantitative standardization has been established through x-ray analysis of frozen-hydrated and then dried sections(More)
The distribution of elements (e.g. Na, Cl, K) and water in CNS cells is unknown. Therefore, electron probe X-ray microanalysis (EPMA) was used to measure water content and concentrations (mmol/kg dry or wet weight) of Na, Mg, P, S, Cl, K and Ca in morphological compartments of myelinated axons and glial cells from rat optic nerve and cervical spinal cord(More)