Albert J Berger

Learn More
Using an in vitro rat brain stem slice preparation, we examined the postnatal changes in glycinergic inhibitory postsynaptic currents (IPSCs) and passive membrane properties that underlie a developmental change in inhibitory postsynaptic potentials (IPSPs) recorded in hypoglossal motoneurons (HMs). Motoneurons were placed in three age groups: neonate(More)
Using whole cell patch-clamp recording in a rat brain stem slice preparation, we found that gamma-aminobutyric acid (GABA) and glycine act as cotransmitters to hypoglossal motoneurons (HMs). Focal application of GABA and glycine onto a single HM revealed that GABAA and glycine receptors are present on the same neuron. To demonstrate that HMs receive both(More)
1. The role of multiple potassium conductances in action potential repolarization and repetitive firing behavior of hypoglossal motoneurons was investigated using intracellular recording techniques in a brain stem slice preparation of the neonatal rat (0-15 days old). 2. The action potential was followed by two distinct afterhyperpolarizations (AHPs). The(More)
1. The role of calcium conductances in action potential generation and repetitive firing behavior of hypoglossal motoneurons (HMs) was investigated using intracellular recording and patch-clamp techniques in a brain stem slice preparation of neonatal rats (0-15 days old). 2. The action potential was followed by an afterdepolarization (ADP). The ADP was(More)
Glycine uptake governs glycine site occupancy at NMDA receptors of excitatory synapses. J. Neurophysiol. 80: 3336-3340, 1998. At central synapses occupation of glycine binding sites of N-methyl--aspartate receptors (NMDA-Rs) is a necessary prerequisite for the excitatory neurotransmitter glutamate to activate these receptors. There is conflicting evidence(More)
1. The mammalian brain ventricles are lined with ciliated ependymal cells. As yet little is known about the mechanisms by which neurotransmitters regulate cilia beat frequency (CBF). 2. Application of 5-HT to ependymal cells in cultured rat brainstem slices caused CBF to increase. 5-HT had an EC50 of 30 microM and at 100 microM attained a near-maximal CBF(More)
1. We investigated the effects of serotonin (5-hydroxytryptamine, 5-HT) on whole-cell barium currents through calcium channels in visualized neonatal rat hypoglossal motoneurones (HMs) in a thin brainstem slice preparation. 2. High voltage-activated (HVA) currents were elicited by depolarizing voltage steps from -70 to 0 mV; low voltage-activated (LVA)(More)
1. Single-electrode voltage clamp recordings in a rat brain stem slice preparation were used to determine the characteristics and postnatal development of a hyperpolarization-activated inward current (Ih) in hypoglossal motoneurons (HMs). 2. In young adult HMs (> P21), a noninactivating, time- and voltage-dependent inward current was evident during(More)
Calcium influx through voltage-gated Ca2+ channels plays an important role in neuronal function. In a thin-slice preparation of neonatal rat hypoglossal motoneurons (HMs) we recorded Ba2+ currents through voltage-gated Ca2+ channels using the whole-cell configuration of the patch-clamp technique. We found that HMs have low-voltage-activated (LVA) and at(More)
1. Whole cell recordings of glutamatergic excitatory postsynaptic currents (EPSCs) evoked by electrical stimulation in the reticular formation were made from visualized hypoglossal motoneurons (HMs) in rat brain stem slices. 2. Carbachol, muscarine, or physostigmine reduced EPSC amplitude to 50 +/- 3%, 37 +/- 3%, and 54 +/- 7% (mean +/- SE) of control,(More)