Albert J Bae

Learn More
Natural chemical gradients to which cells respond chemotactically are often dynamic, with both spatial and temporal components. A primary example is the social amoeba Dictyostelium, which migrates to the source of traveling waves of chemoattractant as part of a self-organized aggregation process. Despite its physiological importance, little is known about(More)
The rapid reorganization of the actin cytoskeleton in response to external stimuli is an essential property of many motile eukaryotic cells. Here, we report evidence that the actin machinery of chemotactic Dictyostelium cells operates close to an oscillatory instability. When averaging the actin response of many cells to a short pulse of the chemoattractant(More)
Dictyostelium amoe-bae The conventional mode for amoeboid loco-motion is crawling. recently demonstrated that Dic-tostelium amoebae are also capable of swimming towards chemoattractants [1]. They hypothesized that the mechanism for swimming is intimately related to crawling. When crawling, the cell front bifurcates, and protrusions move backwards, relative(More)
Chemotaxis, the directed motion of a cell toward a chemical source, plays a key role in many essential biological processes. Here, we derive a statistical model that quantitatively describes the chemotactic motion of eukaryotic cells in a chemical gradient. Our model is based on observations of the chemotactic motion of the social ameba Dictyostelium(More)
Vegetative and developed amoebae of Dictyostelium discoideum gain traction and move rapidly on a wide range of substrata without forming focal adhesions. We used two independent assays to quantify cell-substrate adhesion in mutants and in wild-type cells as a function of development. Using a microfluidic device that generates a range of hydrodynamic shear(More)
Chemotaxis is the ability to migrate towards the source of chemical gradients. It underlies the ability of neutrophils and other immune cells to hone in on their targets and defend against invading pathogens. Given the importance of neutrophil migration to health and disease, it is crucial to understand the basic mechanisms controlling chemotaxis so that(More)
Eukaryotic cell flattening is valuable for improving microscopic observations, ranging from bright field (BF) to total internal reflection fluorescence (TIRF) microscopy. Fundamental processes, such as mitosis and in vivo actin polymerization, have been investigated using these techniques. Here, we review the well known agar overlayer protocol and the oil(More)
  • 1