Albert G. Veldhuizen

Iris Busscher7
Gijsbertus J Verkerke4
7Iris Busscher
4Gijsbertus J Verkerke
Learn More
New spinal implants and surgical procedures are often tested pre-clinically on human cadaver spines. However, the availability of fresh frozen human cadaver material is very limited and alternative animal spines are more easily available in all desired age groups, and have more uniform geometrical and biomechanical properties. The porcine spine is said to(More)
Although analysis of scoliotic deformity is still studied extensively by means of conventional roentgenograms, computer-assisted digital analysis may allow a faster, more accurate and more complete evaluation of the scoliotic spine. In this study, a new computer-assisted measurement method was evaluated. This method uses digital reconstruction images for(More)
The paraspinal muscles have been implicated as a major causative factor in the progression of idiopathic scoliosis. Therefore, the objectives of this preliminary study were to measure the electromyographic activity (EMG) of the paraspinal muscles to determine its relationship to progression of the scoliotic curve. Idiopathic scoliotic patients were selected(More)
STUDY DESIGN.: An in vitro study on human multilevel spinal segments. OBJECTIVE.: To determine the differences in biomechanical characteristics between 4 separate regions of the human spine and to provide quantitative information is derived on the range of motion (ROM), neutral zone (NZ), neutral zone stiffness (NZstiff), and flexibility (FLEX). SUMMARY OF(More)
The use of 3D ultrasound imaging to follow the progression of scoliosis, i.e., a 3D deformation of the spine, is described. Unlike other current examination modalities, in particular based on X-ray, its non-detrimental effect enables it to be used frequently to follow the progression of scoliosis which sometimes may develop rapidly. Furthermore, 3D(More)
BACKGROUND Spinal systems that are currently available for correction of spinal deformities or degeneration such as lumbar spondylolisthesis or degenerative disc disease use components manufactured from stainless steel or titanium and typically comprise two spinal rods with associated connection devices (for example: DePuy Spines Titanium Moss Miami Spinal(More)
STUDY DESIGN A validated finite element model of an L3-L4 motion segment is used to analyze the effects of interpersonal differences in geometry on spinal stiffness. OBJECTIVE The objective of this study is to determine which of the interpersonal variations of the geometry of the spine have a large effect on spinal stiffness. This will improve(More)
BACKGROUND Scoliosis is present in 3-5% of the children in the adolescent age group, with a higher incidence in females. Treatment of adolescent idiopathic scoliosis is mainly dependent on the progression of the scoliotic curve. There is a close relationship between curve progression and rapid (spinal) growth of the patient during puberty. However, until(More)
Predicting the peak growth velocity in an individual patient with adolescent idiopathic scoliosis is essential or determining the prognosis of the disorder and timing of the (surgical) treatment. Until the present time, no accurate method has been found to predict the timing and magnitude of the pubertal growth spurt in the individual child. A mathematical(More)