Learn More
The mechanisms of the magnetization switching of magnetic multilayers driven by a current are studied by including exchange interaction between local moments and spin accumulation of conduction electrons. It is found that this exchange interaction leads to two additional terms in the Landau-Lifshitz-Gilbert equation: an effective field and a spin torque.(More)
What does this mean? It is possible that for some unknown reason the Majorana zero modes are more stable and occur under a wider range of conditions than theoretically expected, or that we have been lucky in terms of achieving the necessary conditions in the existing devices. It is also possible that the non-quantized zero-bias peaks reflect ordinary(More)
Magnetic skyrmions are topologically stable spin configurations, which usually originate from chiral interactions known as Dzyaloshinskii-Moriya interactions. Skyrmion lattices were initially observed in bulk non-centrosymmetric crystals, but have more recently been noted in ultrathin films, where their existence is explained by interfacial(More)
We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas(More)
Multiferroics are singular materials that can exhibit simultaneously electric and magnetic orders. Some are ferroelectric and ferromagnetic and provide the opportunity to encode information in electric polarization and magnetization to obtain four logic states. However, such materials are rare and schemes allowing a simple electrical readout of these states(More)
The Rashba effect is an interaction between the spin and the momentum of electrons induced by the spin-orbit coupling (SOC) in surface or interface states. Its potential for conversion between charge and spin currents has been theoretically predicted but never clearly demonstrated for surfaces or interfaces of metals. Here we present experiments evidencing(More)
We demonstrate that a giant spin Hall effect (SHE) can be induced by introducing a small amount of Bi impurities in Cu. Our analysis, based on a new three-dimensional finite element treatment of spin transport, shows that the sign of the SHE induced by the Bi impurities is negative and its spin Hall (SH) angle amounts to -0.24. Such a negative large SH(More)
We study the extrinsic spin Hall effect induced by Ir impurities in Cu by injecting a pure spin current into a CuIr wire from a lateral spin valve structure. While no spin Hall effect is observed without Ir impurity, the spin Hall resistivity of CuIr increases linearly with the impurity concentration. The spin Hall angle of CuIr, (2.1±0.6)% throughout the(More)
Synchronized spin-valve oscillators may lead to nanosized microwave generators that do not require discrete elements such as capacitors or inductors. Uniformly magnetized oscillators have been synchronized, but offer low power. Gyrating magnetic vortices offer greater power, but vortex synchronization has yet to be demonstrated. Here we find that vortices(More)