Albert Ferrer

Learn More
1-Deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) catalyzes the first committed step of the 2-C-methyl-D-erythritol 4-phosphate pathway for isoprenoid biosynthesis. In Arabidopsis, DXR is encoded by a single-copy gene. We have cloned a full-length cDNA corresponding to this gene. A comparative analysis of all plant DXR sequences known to date predicted(More)
The enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (EC catalyses the synthesis of mevalonate, the specific precursor of all isoprenoid compounds present in plants. We have characterized two overlapping cDNA clones that encompass the entire transcription unit of an HMG-CoA reductase gene from Arabidopsis thaliana. The(More)
Plants produce diverse isoprenoids, which are synthesized in plastids, mitochondria, endoplasmic reticulum (ER), and the nonorganellar cytoplasm. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) catalyzes the synthesis of mevalonate, a rate-limiting step in the cytoplasmic pathway. Several branches of the pathway lead to the synthesis of structurally(More)
Two DNA fragments, AP-1 and AP-2, encoding amino acid sequences closely related to Ser/Thr protein phosphatases were amplified from Arabidopsis thaliana genomic DNA. Fragment AP-1 was used to screen. A. thaliana cDNA libraries and several positive clones were isolated. Clones EP8a and EP14a were sequenced and found to encode almost identical proteins (97%(More)
Squalene synthase (SQS) catalyzes the condensation of two molecules of farnesyl diphosphate (FPP) to produce squalene (SQ), the first committed precursor for sterol, brassinosteroid, and triterpene biosynthesis. Arabidopsis thaliana contains two SQS-annotated genomic sequences, At4g34640 (SQS1) and At4g34650 (SQS2), organized in a tandem array. Here we(More)
In spinach (Spinacea oleracea L.) leaf extracts, three protein kinases (PKI, PKII and PKIII) were identified each of which phosphorylated spinach nitrate reductase on serine-543, and inactivated the enzyme in the presence of nitrate reductase inhibitor, 14-3-3. PKIII was also very active in phosphorylating and inactivating Arabidopsis (Landsberg erecta)(More)
Parthenolide, the main bioactive compound of the medicinal plant feverfew (Tanacetum parthenium), is a promising anti-cancer drug. However, the biosynthetic pathway of parthenolide has not been elucidated yet. Here we report on the isolation and characterization of all the genes from feverfew that are required for the biosynthesis of parthenolide, using a(More)
Overexpression of Arabidopsis thaliana farnesyl diphosphate synthase isoform 1S (FPS1S) in transgenic A. thaliana (L.) Heynh. leads to necrotic lesion formation in leaves in planta and to premature senescence in detached leaves [A. Masferrer et al. (2002) Plant J 30:123–132]. Here we report that leaves of plants overexpressing FPS1S with symptoms of(More)
Plants synthesize a myriad of isoprenoid products that are required both for essential constitutive processes and for adaptive responses to the environment. The enzyme 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) catalyzes a key regulatory step of the mevalonate pathway for isoprenoid biosynthesis and is modulated by many endogenous and external stimuli.(More)
Squalene epoxidase enzymes catalyse the conversion of squalene into 2,3-oxidosqualene, the precursor of cyclic triterpenoids. Here we report that the Arabidopsis drought hypersensitive/squalene epoxidase 1-5 (dry2/sqe1-5) mutant, identified by its extreme hypersensitivity to drought stress, has altered stomatal responses and root defects because of a point(More)