Albert Boronat

Learn More
Plant isoprenoids represent a heterogeneous group of compounds which play essential roles not only in growth and development, but also in the interaction of plants with their environment. Higher plants contain two pathways for the biosynthesis of isoprenoids: the mevalonate pathway, located in the cytosol/endoplasmic reticulum, and the recently discovered(More)
Plants synthesize an enormous variety of metabolites that can be classified into two groups based on their function: primary metabolites, which participate in nutrition and essential metabolic processes within the plant, and secondary metabolites (also referred to as natural products), which influence ecological interactions between plants and their(More)
The enzyme 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR; EC catalyzes the first rate-limiting step in plant isoprenoid biosynthesis. Arabidopsis thaliana contains two genes, HMG1 and HMG2, that encode HMGR. We have cloned these two genes and analyzed their structure and expression. HMG1 and HMG2 consist of four exons and three small introns that(More)
1-Deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) catalyzes the first committed step of the 2-C-methyl-D-erythritol 4-phosphate pathway for isoprenoid biosynthesis. In Arabidopsis, DXR is encoded by a single-copy gene. We have cloned a full-length cDNA corresponding to this gene. A comparative analysis of all plant DXR sequences known to date predicted(More)
The enzyme farnesyl-diphosphate synthase (FPS; EC catalyzes the synthesis of farnesyl diphosphate (FPP) from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). This reaction is considered to be a rate-limiting step in isoprenoid biosynthesis. Southern blot analysis indicates that Arabidopsis thaliana contains at least(More)
The genetic manipulation of both the mevalonic acid (MVA) and methylerythritol-4-phosphate (MEP) pathways, leading to the formation of isopentenyl diphosphate (IPP), has been achieved in tomato using 3-hydroxymethylglutaryl CoA (hmgr-1) and 1-deoxy-d-xylulose-5-phosphate synthase (dxs) genes, respectively. Transgenic plants containing an additional hmgr-1(More)
Recent studies have suggested a role for neurotrophins in the growth and refinement of neural connections, in dendritic growth, and in activity-dependent adult plasticity. To unravel the role of endogenous neurotrophins in the development of neural connections in the CNS, we studied the ontogeny of hippocampal afferents in trkB (-/-) and trkC (-/-) mice.(More)
The enzyme farnesyl-diphosphate synthase (FPS; EC 2.5.1. 10) catalyzes the synthesis of farnesyl diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate. FPS is considered to play a key role in isoprenoid biosynthesis. We have reported previously that Arabidopsis thaliana contains two differentially expressed genes, FPS1 and FPS2,(More)
The achaete-scute gene complex (AS-C), involved in differentiation of the sensory chaetes of D. melanogaster, and the yellow locus have been cloned. The yellow locus is the most distal and is followed, proximally, by the achaete and the scute loci. In the scute locus (75 kb), three transcription units separated by long stretches of DNA give rise to poly(A)+(More)
Carotenoids are isoprenoid pigments that function as photoprotectors, precursors of the hormone abscisic acid (ABA), colorants and nutraceuticals. A major problem for the metabolic engineering of high carotenoid levels in plants is the limited supply of their isoprenoid precursor geranylgeranyl diphosphate (GGPP), formed by condensation of isopentenyl(More)