Learn More
The importance of canonical transforming growth factor beta (TGF-beta) and bone morphogenetic protein (BMP) signaling during cartilage and joint development is well established, but the necessity for noncanonical (SMAD-independent) signaling during these processes is largely unknown. TGF-beta activated kinase 1 (TAK1) is a MAP3K activated by TGF-beta, BMP,(More)
Although the essential role of cyclooxygenase (COX)-2 in fracture healing is known, the targeted genes and molecular pathways remain unclear. Using prostaglandin E2 receptor (EP)2 and EP4 agonists, we examined the effects of EP receptor activation in compensation for the lack of COX-2 during fracture healing. In a fracture-healing model, COX-2(-/-) mice(More)
Connexin 43 (Cx43) is a gap junction protein that plays an integral role in the skeletal response to mechanical loading and unloading. In a previous study, we demonstrated preservation of trabecular bone mass and cortical bone formation rate in mice with an osteoblast/osteocyte-selective deficiency of Cx43 (cKO) following mechanical unloading via hindlimb(More)
Cell-to-cell and cell-to-matrix communication in bone cells mediated by gap junctions and hemichannels, respectively, maintains bone homeostasis. Gap junctional communication between cells permits the passage of small molecules including calcium and cyclic AMP. This cell-to-cell communication occurs between bone cells including osteoblasts, osteoclasts and(More)
Tendon injury frequently results in the formation of adhesions that reduce joint range of motion. To study the cellular, molecular, and biomechanical events involved in intrasynovial tendon healing and adhesion formation, we developed a murine flexor tendon healing model in which the flexor digitorum longus (FDL) tendon of C57BL/6 mice was transected and(More)
Bone adaptation to its mechanical environment, from embryonic through adult life, is thought to be the product of increased osteoblastic differentiation from mesenchymal stem cells. In parallel with tissue-scale loading, these heterogeneous populations of multipotent stem cells are subject to a variety of biophysical cues within their native(More)
Studies were performed evaluating the role of Smad3, a transcription factor mediating canonical TGF-β signaling, on scarring and adhesion formation using an established flexor digitorum longus (FDL) tendon repair model. In unoperated animals the metatarsophalangeal (MTP) range of motion (ROM) was similar in Smad3(-/-) and wild-type (WT) mice while the basal(More)
Connexin43 (Cx43) plays an important role in osteoblastic differentiation in vitro, and bone formation in vivo. Mice with osteoblast/osteocyte-specific loss of Cx43 display decreased gap junctional intercellular communication (GJIC), bone density, and cortical thickness. To determine the role of Cx43 in fracture healing, a closed femur fracture was induced(More)
Adult stem cells, including mesenchymal stem cells, display plasticity in that they can differentiate toward various lineages including bone cells, cartilage cells, fat cells, and other types of connective tissue cells. However, it is not clear what factors direct adult stem cell lineage commitment and terminal differentiation. Emerging evidence suggests(More)
Connexin 43 (Cx43) is the most abundant gap junction protein in bone and is required for osteoblastic differentiation and bone homeostasis. During fracture healing, Cx43 is abundantly expressed in osteoblasts and osteocytes, while Cx43 deficiency impairs bone formation and healing. In the present study we selectively deleted Cx43 in the osteoblastic lineage(More)