Learn More
Changing climate is predicted to impact all depths of the global oceans, yet projections of range shifts in marine faunal distributions in response to changing climate seldom evaluate potential shifts in depth distribution. Marine ectotherms' thermal tolerance is limited by their ability to maintain aerobic metabolism (oxygen- and capacity-limited(More)
The Human PAX6 Mutation Database contains details of 94 mutations of the PAX6 gene. A Microsoft Access program is used by the Curator to store, update and search the database entries. Mutations can be entered directly by the Curator, or imported from submissions made via the World Wide Web. The PAX6 Mutation Database web page at URL(More)
Depth zonation of fauna on continental margins is well documented. Whilst increasing hydrostatic pressure with depth has long been considered a factor contributing significantly to this pattern, discussion of the relative significance of decreasing temperature with depth has continued. This study investigates the physiological tolerances of fed and starved(More)
Bathymetric biodiversity patterns of marine benthic invertebrates and demersal fishes have been identified in the extant fauna of the deep continental margins. Depth zonation is widespread and evident through a transition between shelf and slope fauna from the shelf break to 1000 m, and a transition between slope and abyssal fauna from 2000 to 3000 m; these(More)
  • 1