Learn More
Mast-cell activation mediated by the high-affinity receptor for IgE (FcepsilonRI) is considered to be a key event in the allergic inflammatory response. However, in a physiological setting, other receptors, such as KIT, might also markedly influence the release of mediators by mast cells. Recent studies have provided evidence that FcepsilonRI-dependent(More)
The mast cell is a central player in allergy and asthma. Activation of these cells induces the release of preformed inflammatory mediators localized in specialized granules and the de novo synthesis and secretion of cytokines, chemokines, and eicosanoids. The balance of engaging inhibitory and activatory cell-surface receptors on mast cells determines(More)
The recent development of a consensus definition and proposed diagnostic criteria for anaphylaxis offers promise for research efforts and a better understanding of the epidemiology and pathogenesis of this enigmatic and life-threatening disease. This review examines basic principles and recent research advances in the mechanisms of mast cell signaling(More)
Mast cell mediator release represents a pivotal event in the initiation of inflammatory reactions associated with allergic disorders. These responses follow antigen-mediated aggregation of immunoglobulin E (IgE)-occupied high-affinity receptors for IgE (Fc epsilon RI) on the mast cell surface, a response which can be further enhanced following stem cell(More)
The Fc-region of immunoglobulin E (IgE) comprising C epsilon 2, C epsilon 3, and C epsilon 4 domains is sufficient for binding to the alpha chain of the high affinity IgE-Fc receptor (Fc epsilon RI alpha). In order to identify the smallest Fc fragment capable of binding to the Fc epsilon RI alpha with high affinity, various regions of the IgE-Fc molecule(More)
Mast cells infiltrate the sites of inflammation associated with chronic atopic disease and during helminth and bacterial infection. This process requires receptor-mediated cell chemotaxis across a concentration gradient of their chemotactic ligands. In vivo, mast cells are likely to be exposed to several such agents, which can cooperate in a synergistic(More)
We have developed an improved thin-layer chromatographic method for separation of lung phospholipids. Individual phospholipids are completely separated in the first dimension. All phospholipids, except phosphatidylcholine, are then removed. The phosphatidylcholine-containing area is reacted with osmium tetroxide and saturated phosphatidylcholine species are(More)
RBL 2H3 cells (a model of mast cell function) were sensitized with anti-TNP IgE (0.5 micrograms/ml) and triggered to secrete both histamine and arachidonic acid (AA) metabolites by the addition of TNP-OVA (0 to 100 ng/ml). After a 3-min delay, the release of both groups of mediators proceeded in a parallel manner. In cells labeled with [14C]-AA, TNP-OVA(More)
Inflammatory substances released by mast cells induce and maintain the allergic response. Mast cell differentiation and activation are regulated, respectively, by stem cell factor (SCF; also known as Kit ligand) and by allergen in complex with allergen-specific immunoglobulin E (IgE). Activated SCF receptors and high-affinity receptors for IgE(More)
Engagement of the high affinity receptor for IgE (FcepsilonRI) on mast cells results in the production and secretion of sphingosine 1-phosphate (S1P), a lipid metabolite present in the lungs of allergen-challenged asthmatics. Herein we report that two isoforms of sphingosine kinase (SphK1 and SphK2) are expressed and activated upon FcepsilonRI engagement of(More)