Learn More
Effective sensory processing requires matching the gain of neural responses to the range of signals encountered. For rod vision, gain controls operate at light levels at which photons arrive rarely at individual rods, light levels too low to cause adaptation in rod phototransduction. Under these conditions, adaptation within a conserved pathway in mammalian(More)
A threshold-like nonlinearity in signal transfer from mouse rod photoreceptors to rod bipolar cells dramatically improves the absolute sensitivity of the rod signals. The work described here reaches three conclusions about the mechanisms generating this nonlinearity. (1) The nonlinearity is caused primarily by saturation of the feedforward rod-to-rod(More)
A 10 microm spot of argon laser light was focused onto the outer segments of intact mouse rods loaded with fluo-3, fluo-4 or fluo-5F, to estimate dark, resting free Ca(2+) concentration ([Ca(2+)](i)) and changes in [Ca(2+)](i) upon illumination. Dye concentration was adjusted to preserve the normal physiology of the rod, and the laser intensity was selected(More)
Complexes of regulator of G-protein signaling (RGS) proteins with G-protein beta5 (Gbeta5) subunits are essential components of signaling pathways that regulate the temporal characteristics of light-evoked responses in vertebrate retinal photoreceptors and ON-bipolar cells. Recent studies have found that RGS/Gbeta5 complexes bind to a new family of adapter(More)
Vision at absolute threshold is based on signals produced in a tiny fraction of the rod photoreceptors. This requires that the rods signal the absorption of single photons, and that the resulting signals are transmitted across the retina and encoded in the activity sent from the retina to the brain. Behavioral and ganglion cell sensitivity has often been(More)
Why do vertebrates use rods and cones that hyperpolarize, when in insect eyes a single depolarizing photoreceptor can function at all light levels? We answer this question at least in part with a comprehensive assessment of ATP consumption for mammalian rods from voltages and currents and recently published physiological and biochemical data. In darkness,(More)
Spontaneous current and voltage fluctuations (dark noise) in the photoreceptor cells of the retina limit the ability of the visual system to detect dim light. We recorded the dark current noise of individual salamander L cones. Previous work showed that the dark noise in these cells arises from thermal activation of the visual pigment. From the temperature(More)
The time course of signaling via heterotrimeric G proteins is controlled through their activation by G-protein coupled receptors and deactivation through the action of GTPase accelerating proteins (GAPs). Here we identify RGS7 and RGS11 as the key GAPs in the mGluR6 pathway of retinal rod ON bipolar cells that set the sensitivity and time course of(More)
The nervous system frequently integrates parallel streams of information to encode a broad range of stimulus strengths. In mammalian retina it is generally believed that signals generated by rod and cone photoreceptors converge onto cone bipolar cells prior to reaching the retinal output, the ganglion cells. Near absolute visual threshold a specialized(More)
Sensory receptors transduce physical stimuli in the environment into neural signals that are interpreted by the brain. Although considerable attention has been given to how the sensitivity and dynamic range of sensory receptors is established, peripheral synaptic interactions improve the fidelity with which receptor output is transferred to the brain. For(More)