Alan W. Colman

Learn More
Ovine primary fetal fibroblasts were cotransfected with a neomycin resistance marker gene (neo) and a human coagulation factor IX genomic construct designed for expression of the encoded protein in sheep milk. Two cloned transfectants and a population of neomycin (G418)-resistant cells were used as donors for nuclear transfer to enucleated oocytes. Six(More)
The segmental premature aging disease Hutchinson-Gilford Progeria syndrome (HGPS) is caused by a truncated and farnesylated form of Lamin A called progerin. HGPS affects mesenchymal lineages, including the skeletal system, dermis, and vascular smooth muscle (VSMC). To understand the underlying molecular pathology of HGPS, we derived induced pluripotent stem(More)
Vg1 is a maternal mRNA localized to the vegetal hemisphere of Xenopus embryos during blastula stages, a region responsible for the induction of mesoderm in the adjacent marginal zone. Its homology to the transforming growth factor-beta family, which includes several proteins with mesoderm-inducing activity, suggests a role for Vg1 as an endogenous(More)
Galactose-alpha1,3-galactose (alpha1,3Gal) is the major xenoantigen causing hyperacute rejection in pig-to-human xenotransplantation. Disruption of the gene encoding pig alpha1,3-galactosyltransferase (alpha1,3GT) by homologous recombination is a means to completely remove the alpha1,3Gal epitopes from xenografts. Here we report the disruption of one allele(More)
Cultured human embryonic stem cell (hESC) lines are an invaluable resource because they provide a uniform and stable genetic system for functional analyses and therapeutic applications. Nevertheless, these dividing cells, like other cells, probably undergo spontaneous mutation at a rate of 10−9 per nucleotide. Because each mutant has only a few progeny, the(More)
Since the first report of live mammals produced by nuclear transfer from a cultured differentiated cell population in 1995 (ref. 1), successful development has been obtained in sheep, cattle, mice and goats using a variety of somatic cell types as nuclear donors. The methodology used for embryo reconstruction in each of these species is essentially similar:(More)
It is over a decade since the first demonstration that mouse embryonic stem cells could be used to transfer a predetermined genetic modification to a whole animal. The extension of this technique to other mammalian species, particularly livestock, might bring numerous biomedical benefits, for example, ablation of xenoreactive transplantation antigens,(More)
Human embryonic stem cells (hESC) can differentiate to cardiomyocytes in vitro but with generally poor efficiency. Here, we describe a novel method for the efficient generation of cardiomyocytes from hESC in a scalable suspension culture process. Differentiation in serum-free medium conditioned by the cell line END2 (END2-CM) readily resulted in(More)
Availability of several web services having a similar functionality has led to using quality of service (QoS) attributes to support services selection and management. To improve these operations and be performed proactively, time series ARIMA models have been used to forecast the future QoS values. However, the problem is that in this extremely dynamic(More)
Many applications of human embryonic stem cells (hESCs) will require fully defined growth and differentiation conditions including media devoid of fetal calf serum. To identify factors that control lineage differentiation we have analyzed a serum-free (SF) medium conditioned by the cell line END2, which efficiently induces hESCs to form cardiomyocytes.(More)