Alan Stephenson

Learn More
Recently, it was reported that rabbit and human red blood cells (RBCs) release ATP in response to mechanical deformation. Here we investigate the hypothesis that the activity of the cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ATP binding cassette, is required for deformation-induced ATP release from RBCs. Incubation of rabbit(More)
Recently, we reported that rabbit red blood cells (RBCs) were required for the expression of nitric oxide (NO) activity on pulmonary vascular resistance (PVR) in rabbit lungs. Here, we investigate the hypothesis that RBCs participate in the regulation of PVR via release of ATP in response to mechanical deformation that, in turn, evokes vascular NO(More)
Through oxygen-dependent release of the vasodilator ATP, the mobile erythrocyte plays a fundamental role in matching microvascular oxygen supply with local tissue oxygen demand. Signal transduction within the erythrocyte and microvessels as well as feedback mechanisms controlling ATP release have been described. Our understanding of the impact of this novel(More)
Human erythrocytes, by virtue of their ability to release ATP in response to physiological stimuli, have been proposed to participate in the regulation of local blood flow. A signal transduction pathway that relates these stimuli to ATP release has been described and includes the heterotrimeric G protein G(i) and adenylyl cyclase (AC). In this cell, G(i)(More)
Differences in prostaglandin H synthetase (PHS) activity in the substantia nigra of age- and postmortem interval-matched parkinsonian, Alzheimer's, and normal control brain tissue were assessed. Prostaglandin E2 (PGE2, an index of PHS activity) was higher in substantia nigra of parkinsonian brain tissue than Alzheimer's or control tissue. Incubation of(More)
Previously, we reported that red blood cells (RBCs) of rabbits and humans release ATP in response to mechanical deformation and that this release of ATP requires the activity of the cystic fibrosis transmembrane conductance regulator (CFTR). It was reported that cAMP, acting through a cAMP-dependent protein kinase, PKA, is an activator of CFTR. Here we(More)
Eicosanoid production appears to be important to both edemagenesis and the pattern of pulmonary perfusion in experimental acute lung injury (ALI). We hypothesized that these effects could be mediated by the inducible form of cyclooxygenase (COX-2). We used positron emission tomography to evaluate the pulmonary perfusion pattern in dogs given oleic acid (OA)(More)
Erythrocytes are reported to release ATP in response to mechanical deformation and decreased oxygen tension. Previously we proposed that receptor-mediated activation of the heterotrimeric G protein G(s) resulted in ATP release from erythrocytes. Here we investigate the hypothesis that activation of heterotrimeric G proteins of the G(i) subtype are also(More)
The oxygen required to meet metabolic needs of all tissues is delivered by the erythrocyte, a small, flexible cell which, in mammals, is devoid of a nucleus and mitochondria. Despite its simple appearance, this 'bag of hemoglobin' has an important role in its own distribution, enabling the delivery of oxygen to precisely meet localized metabolic need. When(More)
In an animal model of unilateral alveolar hypoxia, inhibition of cyclooxygenase activity, estimates of immunoreactive 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha), and administration of prostaglandin I2 (PGI2) were used to evaluate the hypothesis that endogenous PGI2 opposes hypoxic pulmonary vasoconstriction, thereby producing redistribution of blood(More)