Learn More
Recently, it was reported that rabbit and human red blood cells (RBCs) release ATP in response to mechanical deformation. Here we investigate the hypothesis that the activity of the cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ATP binding cassette, is required for deformation-induced ATP release from RBCs. Incubation of rabbit(More)
OBJECTIVE ATP released from human erythrocytes in response to reduced oxygen tension (pO(2)) participates in the matching of oxygen (O(2)) supply with need in skeletal muscle by stimulating increases in blood flow to areas with increased O(2) demand. Here, we investigated the hypothesis that hyperinsulinemia inhibits ATP release from erythrocytes and(More)
Eicosanoid production appears to be important to both edemagenesis and the pattern of pulmonary perfusion in experimental acute lung injury (ALI). We hypothesized that these effects could be mediated by the inducible form of cyclooxygenase (COX-2). We used positron emission tomography to evaluate the pulmonary perfusion pattern in dogs given oleic acid (OA)(More)
Human erythrocytes, by virtue of their ability to release ATP in response to physiological stimuli, have been proposed to participate in the regulation of local blood flow. A signal transduction pathway that relates these stimuli to ATP release has been described and includes the heterotrimeric G protein G(i) and adenylyl cyclase (AC). In this cell, G(i)(More)
Erythrocytes have been reported to release ATP from intracellular stores into the surrounding environment in response to decreased oxygen tension and mechanical deformation. This erythrocyte-derived ATP can then act on purinergic receptors present on vascular endothelial cells, resulting in the synthesis and bidirectional release of nitric oxide (NO). NO(More)
In non-erythroid cells, insulin stimulates a signal transduction pathway that results in the activation of phosphoinositide 3-kinase (PI3K) and subsequent phosphorylation of phosphodiesterase 3 (PDE3). Erythrocytes possess insulin receptors, PI3K and PDE3B. These cells release adenosine triphosphate (ATP) when exposed to reduced O(2) tension via a signaling(More)
Cholesteryl esters (CE) are important lipid storage molecules. The present study demonstrates that sodiated adducts of CE molecular species form positive ions that can be detected in both survey scan mode as well as by exploiting class-specific fragmentation in MS/MS scan modes. A common neutral loss for CE is the loss of cholestane (NL 368.5), which can be(More)
Through oxygen-dependent release of the vasodilator ATP, the mobile erythrocyte plays a fundamental role in matching microvascular oxygen supply with local tissue oxygen demand. Signal transduction within the erythrocyte and microvessels as well as feedback mechanisms controlling ATP release have been described. Our understanding of the impact of this novel(More)
Recently, we reported that rabbit red blood cells (RBCs) were required for the expression of nitric oxide (NO) activity on pulmonary vascular resistance (PVR) in rabbit lungs. Here, we investigate the hypothesis that RBCs participate in the regulation of PVR via release of ATP in response to mechanical deformation that, in turn, evokes vascular NO(More)
Erythrocytes release ATP in response to exposure to the physiological stimulus of lowered oxygen (O(2)) tension as well as pharmacological activation of the prostacyclin receptor (IPR). ATP release in response to these stimuli requires activation of adenylyl cyclase, accumulation of cAMP, and activation of protein kinase A. The mechanism by which ATP, a(More)