Learn More
Recently, it was reported that rabbit and human red blood cells (RBCs) release ATP in response to mechanical deformation. Here we investigate the hypothesis that the activity of the cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ATP binding cassette, is required for deformation-induced ATP release from RBCs. Incubation of rabbit(More)
OBJECTIVE ATP released from human erythrocytes in response to reduced oxygen tension (pO(2)) participates in the matching of oxygen (O(2)) supply with need in skeletal muscle by stimulating increases in blood flow to areas with increased O(2) demand. Here, we investigated the hypothesis that hyperinsulinemia inhibits ATP release from erythrocytes and(More)
Differences in prostaglandin H synthetase (PHS) activity in the substantia nigra of age- and postmortem interval-matched parkinsonian, Alzheimer's, and normal control brain tissue were assessed. Prostaglandin E2 (PGE2, an index of PHS activity) was higher in substantia nigra of parkinsonian brain tissue than Alzheimer's or control tissue. Incubation of(More)
Eicosanoid production appears to be important to both edemagenesis and the pattern of pulmonary perfusion in experimental acute lung injury (ALI). We hypothesized that these effects could be mediated by the inducible form of cyclooxygenase (COX-2). We used positron emission tomography to evaluate the pulmonary perfusion pattern in dogs given oleic acid (OA)(More)
Previously, we reported that red blood cells (RBCs) of rabbits and humans release ATP in response to mechanical deformation and that this release of ATP requires the activity of the cystic fibrosis transmembrane conductance regulator (CFTR). It was reported that cAMP, acting through a cAMP-dependent protein kinase, PKA, is an activator of CFTR. Here we(More)
BACKGROUND Adenosine triphosphate (ATP), released from the erythrocyte in response to mechanical deformation, decreased oxygen tension or reduced pH, has been suggested to be an important determinant of vascular resistance in several vascular beds. Mechanical deformation-induced ATP release from rabbit and human erythrocytes was reported to require the(More)
Erythrocytes are reported to release ATP in response to mechanical deformation and decreased oxygen tension. Previously we proposed that receptor-mediated activation of the heterotrimeric G protein G(s) resulted in ATP release from erythrocytes. Here we investigate the hypothesis that activation of heterotrimeric G proteins of the G(i) subtype are also(More)
Human erythrocytes, by virtue of their ability to release ATP in response to physiological stimuli, have been proposed to participate in the regulation of local blood flow. A signal transduction pathway that relates these stimuli to ATP release has been described and includes the heterotrimeric G protein G(i) and adenylyl cyclase (AC). In this cell, G(i)(More)
Erythrocytes have been reported to release ATP from intracellular stores into the surrounding environment in response to decreased oxygen tension and mechanical deformation. This erythrocyte-derived ATP can then act on purinergic receptors present on vascular endothelial cells, resulting in the synthesis and bidirectional release of nitric oxide (NO). NO(More)
In non-erythroid cells, insulin stimulates a signal transduction pathway that results in the activation of phosphoinositide 3-kinase (PI3K) and subsequent phosphorylation of phosphodiesterase 3 (PDE3). Erythrocytes possess insulin receptors, PI3K and PDE3B. These cells release adenosine triphosphate (ATP) when exposed to reduced O(2) tension via a signaling(More)