Learn More
The spinal neurons in the embryos and young larvae of two amphibians (Xenopus and Triturus) and two fish (Oryzias and Brachydanio) are described and compared. They can be placed into a limited number of common neuron classes: Rohon-Beard sensory, dorsolateral and dorsolateral commissural sensory interneurons, inhibitory ascending interneurons, two classes(More)
Motor networks typically generate several related output patterns or gaits where individual neurons may be shared or recruited between patterns. We investigate how a vertebrate locomotor network is reconfigured to produce a second rhythmic motor pattern, defining the detailed pattern of neuronal recruitment and consequent changes in the mechanism for rhythm(More)
The neuronal basis of the excitation received by motoneurones during swimming in curarized Xenopus embryos has been investigated further. Extracellular stimulation of axons in the fibre tracts of the spinal cord has been used to evoke unitary excitatory post-synaptic potentials (p.s.p.s) in motoneurones. The p.s.p.s. had a rise time of 3-5 ms and a long(More)
Rohon-Beard neurones show substance P-like immunoactivity in their somas and in their centrally projecting axons. Peripherally, the morphology of their free nerve endings within the trunk skin has been shown using horseradish peroxidase staining. The excitation of Rohon-Beard neurones by natural and electrical stimulation of the skin has been examined using(More)
Neurobiotin was injected into individual spinal interneurons in the Xenopus tadpole to discern their anatomical features and complete axonal projection patterns. Four classes of interneuron are described, with names defining their primary axon projection: Dorsolateral ascending and commissural interneurons are predominantly multipolar cells with somata and(More)
It is rare to be able to explain the behaviour of a whole animal at the level of the properties and connections of characterized CNS neurones. In a marine mollusc, Clione, and a lower vertebrate embryo, Xenopus, it is possible to make intracellular recordings during fictive swimming behaviour. This has allowed us to analyse the operation of two central(More)
The dorsolateral spinal cord of embryonic Xenopus laevis has previously been shown to contain two anatomical classes of interneurones with dendrites in the dorsal tract where they could be contacted by the central axons of Rohon-Beard cells (Roberts & Clarke, 1982). The activity of these neurones within the dorsolateral spinal cord has been examined using(More)
We have used computer simulations as one way to test the hypothesis that locomotor rhythm production for swimming in frog embryo spinal cord depends on rebound from inhibition and is sustained by mutual re-excitation among spinal excitatory interneurons. All simulations were based on physiological and anatomical data on the neurons and circuitry of Xenopus(More)
Understanding the neuronal networks in the mammal spinal cord is hampered by the diversity of neurons and their connections. The simpler networks in developing lower vertebrates may offer insights into basic organization. To investigate the function of spinal inhibitory interneurons in Xenopus tadpoles, paired whole-cell recordings were used. We show(More)