Learn More
People tweet more than 100 Million times daily, yielding a noisy, informal, but sometimes informative corpus of 140-character messages that mirrors the zeitgeist in an unprecedented manner. The performance of standard NLP tools is severely degraded on tweets. This paper addresses this issue by rebuilding the NLP pipeline beginning with part-of-speech(More)
We propose the first unsupervised approach to the problem of modeling dialogue acts in an open domain. Trained on a corpus of noisy Twitter conversations, our method discovers dialogue acts by clustering raw utterances. Because it accounts for the sequential behaviour of these acts, the learned model can provide insight into the shape of communication in a(More)
Recent neural models of dialogue generation offer great promise for generating responses for conversational agents, but tend to be shortsighted , predicting utterances one at a time while ignoring their influence on future outcomes. Modeling the future direction of a dialogue is crucial to generating coherent, interesting dialogues, a need which led(More)
In this paper, we describe the 2015 iteration of the SemEval shared task on Sentiment Analysis in Twitter. This was the most popular sentiment analysis shared task to date with more than 40 teams participating in each of the last three years. This year's shared task competition consisted of five sentiment prediction sub-tasks. Two were reruns from previous(More)
This paper discusses the fourth year of the " Sentiment Analysis in Twitter Task ". SemEval-2016 Task 4 comprises five sub-tasks, three of which represent a significant departure from previous editions. The first two subtasks are reruns from prior years and ask to predict the overall sentiment, and the sentiment towards a topic in a tweet. The three new(More)
We present MULTIP (Multi-instance Learning Paraphrase Model), a new model suited to identify paraphrases within the short messages on Twitter. We jointly model paraphrase relations between word and sentence pairs and assume only sentence-level annotations during learning. Using this principled latent variable model alone, we achieve the performance(More)
Whereas people learn many different types of knowledge from diverse experiences over many years, most current machine learning systems acquire just a single function or data model from just a single data set. We propose a neverending learning paradigm for machine learning, to better reflect the more ambitious and encompassing type of learning performed by(More)
Part-of-speech information is a prerequisite in many NLP algorithms. However, Twitter text is difficult to part-of-speech tag: it is noisy, with linguistic errors and idiosyncratic style. We present a detailed error analysis of existing taggers, motivating a series of tagger augmentations which are demonstrated to improve performance. We identify and(More)