Learn More
This paper provides recommendations on experimental design for early-tier laboratory studies used in risk assessments to evaluate potential adverse impacts of arthropod-resistant genetically engineered (GE) plants on non-target arthropods (NTAs). While we rely heavily on the currently used proteins from Bacillus thuringiensis (Bt) in this discussion, the(More)
Problem formulation is the first step in environmental risk assessment (ERA) where policy goals, scope, assessment endpoints, and methodology are distilled to an explicitly stated problem and approach for analysis. The consistency and utility of ERAs for genetically modified (GM) plants can be improved through rigorous problem formulation (PF), producing an(More)
The environmental risks from cultivating crops producing output trait enzymes can be rigorously assessed by testing conservative risk hypotheses of no harm to endpoints such as the abundance of wildlife, crop yield and the rate of degradation of crop residues in soil. These hypotheses can be tested with data from many sources, including evaluations of the(More)
Forests are vital to the world's ecological, social, cultural and economic well-being yet sustainable provision of goods and services from forests is increasingly challenged by pressures such as growing demand for wood and other forest products, land conversion and degradation, and climate change. Intensively managed, highly productive forestry(More)
The requirement for environmental risk assessment (ERA) of genetically engineered (GE) plants prior to large scale or commercial introduction into the environment is well established in national laws and regulations, as well as in international agreements. Since the first introductions of GE plants in commercial agriculture in the 1990s, a nearly universal(More)
Most commercial transgenic crops are genetically engineered to produce new proteins. Studies to assess the risks to human and animal health, and to the environment, from the use of these crops require grams of the transgenic proteins. It is often extremely difficult to produce sufficient purified transgenic protein from the crop. Nevertheless, ample protein(More)
Networks of trophic links (food webs) are used to describe and understand mechanistic routes for translocation of energy (biomass) between species. However, a relatively low proportion of ecosystems have been studied using food web approaches due to difficulties in making observations on large numbers of species. In this paper we demonstrate that Machine(More)
Policy protection goals are set up in most countries to minimise harm to the environment, humans and animals caused by human activities. Decisions on whether to approve new agricultural products, like pesticides or genetically modified (GM) crops, take into account these policy protection goals. To support decision-making, applications for approval of(More)
One source of potential harm from the cultivation of transgenic crops is their dispersal, persistence and spread in non-agricultural land. Ecological damage may result from such spread if the abundance of valued species is reduced. The ability of a plant to spread in non-agricultural habitats is called its invasiveness potential. The risks posed by the(More)
In this paper we demonstrate that machine learning (using Abductive ILP) can generate plausible and testable food webs from ecological data. In this approach, unlike previous applications of Abductive ILP, the abductive predicate 'eats' is entirely undefined before the start of the learning. We also explore a new approach, called Hypothesis Frequency(More)