Learn More
The amygdala is a temporal lobe structure that is required for processing emotional information. Polymodal sensory information enters the amygdala at the level of the basolateral amygdala (BLA) and undergoes local processing, after which the behavioral and autonomic responses that accompany emotions are initiated. Two main neuron types are present in the(More)
Using mice that express enhance green fluorescent protein (EGFP) under the control of the parvalbumin promoter, we made paired recordings from interneurons and principal neurons in the basal amygdala. In synaptically connected pairs, we show that single action potentials in a parvalbumin expressing interneuron can inhibit spiking in the synaptically(More)
GABA-containing interneurons are a diverse population of cells whose primary mode of action in the mature nervous system is inhibition of postsynaptic target neurons. Using paired recordings from parvalbumin-positive interneurons in the basolateral amygdala, we show that, in a subpopulation of interneurons, single action potentials in one interneuron evoke(More)
Laser microscopy has generally poor temporal resolution, caused by the serial scanning of each pixel. This is a significant problem for imaging or optically manipulating neural circuits, since neuronal activity is fast. To help surmount this limitation, we have developed a "scanless" microscope that does not contain mechanically moving parts. This(More)
Chandelier (or axo-axonic) cells are one of the most distinctive types of GABAergic interneurons in the cortex. Although they have traditionally been considered inhibitory neurons, data from rat and human neocortical preparations suggest that chandelier cells have a depolarizing effect on pyramidal neurons at resting membrane potential, and could even(More)
Chandelier (axoaxonic) cells (ChCs) are a distinct group of GABAergic interneurons that innervate the axon initial segments of pyramidal cells. However, their circuit role and the function of their clearly defined anatomical specificity remain unclear. Recent work has demonstrated that chandelier cells can produce depolarizing GABAergic PSPs, occasionally(More)
Chandelier (or axo-axonic) cells are one of the most distinctive GABAergic interneurons in the brain. Their exquisite target specificity for the axon initial segment of pyramidal neurons, together with their GABAergic nature, long suggested the possibility that they provide the ultimate inhibitory control of pyramidal neuron output. Recent findings indicate(More)
Laser microscopy has generally poor temporal resolution, caused by the serial scanning of each pixel. This is a signifi cant problem for imaging or optically manipulating neural circuits, since neuronal activity is fast. To help surmount this limitation, we have developed a " scanless " microscope that does not contain mechanically moving parts. This(More)
Two-photon microscopy is often performed at slow frame rates due to the need to serially scan all points in a field of view with a single laser beam. To overcome this problem, we have developed two optical methods that split and multiplex a laser beam across the sample. In the first method a diffractive optical element (DOE) generates a fixed number of(More)
The use of spatial light modulators (SLMs) for two-photon laser microscopy is described. SLM phase modulation can be used to generate nearly any spatiotemporal pattern of light, enabling simultaneous illumination of any number of selected regions of interest. We take advantage of this flexibility to perform fast two-photon imaging or uncaging experiments on(More)