Alan R. Schoenfeld

Learn More
BACKGROUND In von Hippel-Lindau (VHL) disease, germline mutations in the VHL tumor suppressor gene cause clear cell renal carcinomas, hemangioblastomas, and pheochromocytomas. The VHL gene product is part of an ubiquitin E3 ligase complex and hypoxia-inducible factor alpha (HIF-alpha) is a key substrate, although additional VHL functions have been(More)
BACKGROUND Mutational inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene has been linked to hereditary as well as sporadic clear cell renal carcinomas. The product of the VHL gene, pVHL, acts to target hypoxia-inducible factor alpha (HIF-alpha) subunits for ubiquitination and subsequent degradation. Using an RNA interference approach to lower(More)
Functional loss of both alleles of the breast cancer susceptibility gene, BRCA2, facilitates tumorigenesis. However, the direct effects of BRCA2 heterozygosity remain unclear. Here, BRCA2 heterozygosity was mimicked in HT-29 colon cells by reducing levels of BRCA2 through stable RNA interference. No difference in RAD51 subcellular localization and focus(More)
Germline mutations in the von Hippel-Lindau (VHL) tumor suppressor gene predispose individuals to clear cell renal carcinomas, hemangioblastomas, and pheochromocytomas. The VHL gene product forms an ubiquitin E3 ligase complex, with regulation of hypoxia-inducible factor alpha (HIF-α) as its best known function. Lack of VHL expression has been shown(More)
Atypical PKC (aPKC) plays a role in establishing cell polarity and has been indicated in neuronal differentiation and polarization, including neurite formation in rat pheochromocytoma PC12 cells, albeit by unclear mechanisms. Here, the role of the aPKC isoform, PKC iota (PKCι), in the early neuronal differentiation of PC12 cells was investigated.(More)
  • 1