Learn More
Individuals carrying a germ line mutation of the breast cancer susceptibility gene BRCA2 are predisposed to breast, ovarian, and other types of cancer. The BRCA2 protein has been proposed to function in the repair of DNA double-strand breaks. Using an immunopurification-mass spectrometry approach to identify novel proteins that associate with the BRCA2 gene(More)
The von Hippel-Lindau (VHL) tumor suppressor gene is inactivated in both sporadic and inherited clear cell renal carcinoma associated with VHL disease. We have identified two distinct native products of the human VHL gene, with apparent molecular masses of 24 and 18 kDa. The 18-kDa VHL protein was more abundant in nearly all cell lines examined.(More)
Inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene causes the familial cancer syndrome, VHL disease, characterized by a predisposition to renal cell carcinoma and other tumor types. Loss of VHL gene function also is found in a majority of sporadic renal carcinomas. A preponderance of the tumor-disposing inherited missense mutations detected(More)
The connexin 32 (Cx32) gene, a member of a multigene family, is expressed preferentially in the liver. The basal promoter complex of the rat Cx32 gene was previously localized to a 146-bp region (map positions [mp] -179 to -34) immediately upstream of the first exon. To investigate the biochemical factors contributing to the basal promoter activity, nuclear(More)
Mutations in the von Hippel-Lindau (VHL) gene are involved in the family cancer syndrome for which it is named and the development of sporadic renal cell cancer (RCC). Reintroduction of VHL into RCC cells lacking functional VHL [VHL(-)] can suppress their growth in nude mice, but not under standard tissue culture conditions. To examine the hypothesis that(More)
Previous studies have reported a protective role for the von Hippel-Lindau (VHL) gene products against pro-apoptotic cellular stresses, but the mechanisms remain unclear. In this study, we examined the role of VHL in renal cells subjected to chemical hypoxia, using four VHL-negative and two VHL-positive cell lines. VHL-negative renal carcinoma cells(More)
In von Hippel-Lindau (VHL) disease, germline mutations in the VHL tumor suppressor gene cause clear cell renal carcinomas, hemangioblastomas, and pheochromocytomas. The VHL gene product is part of an ubiquitin E3 ligase complex and hypoxia-inducible factor alpha (HIF-α) is a key substrate, although additional VHL functions have been described. A(More)
The familial cancer syndrome, von Hippel-Lindau (VHL) disease, characterized by a predisposition to renal cell carcinoma and certain other tumor types, is caused by mutational inactivation of the VHL tumor suppressor gene. Loss of VHL gene function is detected also in the vast majority of sporadic renal cell carcinomas. Previous reports have determined a(More)
Inactivation of the von Hippel-Lindau (VHL) tumor-suppressor gene causes both the familial cancer syndrome VHL disease and corresponding sporadic tumor types, including renal-cell carcinoma. Subcellular localization of VHL gene products was determined by indirect immunofluorescence. Both native and exogenously expressed VHL proteins displayed a cytoplasmic(More)
Mutational inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene has been linked to hereditary as well as sporadic clear cell renal carcinomas. The product of the VHL gene, pVHL, acts to target hypoxia-inducible factor alpha (HIF-α) subunits for ubiquitination and subsequent degradation. Using an RNA interference approach to lower levels of(More)