Alan R. Lemmon

Learn More
A surprising number of recent Bayesian phylogenetic analyses contain branch-length estimates that are several orders of magnitude longer than corresponding maximum-likelihood estimates. The levels of divergence implied by such branch lengths are unreasonable for studies using biological data and are known to be false for studies using simulated data. We(More)
Large phylogeny estimation is a combinatorial optimization problem that no future computer will ever be able to solve exactly in practical computing time. The difficulty of the problem is amplified by the need to use complex evolutionary models and large taxon samplings. Hence, many heuristic approaches have been developed, with varying degrees of success.(More)
As larger, more complex data sets are being used to infer phylogenies, accuracy of these phylogenies increasingly requires models of evolution that accommodate heterogeneity in the processes of molecular evolution. We investigated the effect of improper data partitioning on phylogenetic accuracy, as well as the type I error rate and sensitivity of Bayes(More)
The field of phylogenetics is on the cusp of a major revolution, enabled by new methods of data collection that leverage both genomic resources and recent advances in DNA sequencing. Previous phylogenetic work has required labor-intensive marker development coupled with single-locus polymerase chain reaction and DNA sequencing on clade-by-clade and(More)
Although reconstruction of the phylogeny of living birds has progressed tremendously in the last decade, the evolutionary history of Neoaves--a clade that encompasses nearly all living bird species--remains the greatest unresolved challenge in dinosaur systematics. Here we investigate avian phylogeny with an unprecedented scale of data: >390,000 bases of(More)
Although an increasing number of phylogenetic data sets are incomplete, the effect of ambiguous data on phylogenetic accuracy is not well understood. We use 4-taxon simulations to study the effects of ambiguous data (i.e., missing characters or gaps) in maximum likelihood (ML) and Bayesian frameworks. By introducing ambiguous data in a way that removes(More)
Despite causing considerable human mortality and morbidity, animal toxins represent a valuable source of pharmacologically active macromolecules, a unique system for studying molecular adaptation, and a powerful framework for examining structure-function relationships in proteins. Snake venoms are particularly useful in the latter regard as they consist(More)
Although the trilling chorus frogs (subclade within Pseudacris: Hylidae) have been important in studies of speciation, continental patterns of genetic diversity within and among species have not been elucidated. As a result, this North American clade has been the subject of substantial taxonomic debate. In this study, we examined the phylogenetic(More)
Due to lack of an adequate statistical framework, biologists studying phylogeography are abandoning traditional methods of estimating phylogeographic history in favor of statistical methods designed to test a priori hypotheses. These new methods may, however, have limited descriptive utility. Here, we develop a new statistical framework that can be used to(More)
Tertiary geological events and Quaternary climatic fluctuations have been proposed as important factors of speciation in the North American flora and fauna. Few studies, however, have rigorously tested hypotheses regarding the specific factors driving divergence of taxa. Here, we test explicit speciation hypotheses by correlating geologic events with(More)