Learn More
Recent chronic inhalation carcinogenicity studies of butadiene indicated that B6C3F1 mice are more sensitive to the tumorigenic effects of inhaled butadiene than are Sprague-Dawley rats. Tumors in mice included lymphomas, hemangiosarcomas, alveolar/bronchiolar adenomas and carcinomas, and hepatocellular adenomas and carcinomas whereas in rats tumors(More)
Exposure to diesel exhaust may contribute to lung cancer in humans. It remains unclear whether the carbonaceous core of the soot particle or its coat of adsorbed/condensed organics contributes most to cancer risk. Equally unclear are the extent and rate at which organic procarcinogens desorb from soot particles in the lungs following inhalation exposure and(More)
Enzymes of the nasal tissue, one of the first tissues to contact inhaled toxicants, are relatively resistant to induction by traditional inducers. Because tobacco smoke has been shown to induce cytochrome P450 1A1 (CYP1A1) in rat and human lung tissue, we hypothesized that it would also alter levels of xenobiotic-metabolizing enzymes in nasal mucosae. In(More)
Cerebral artery blood velocity and regional blood flow (rCBF) were investigated in 17 normal subjects. Blood velocity was measured with 2 MHz pulsed Doppler ultrasound in the proximal segments of the middle, anterior and posterior cerebral artery (MCA, ACA, and PCA) and in the distal extracranial internal carotid artery (ICA). The rCBF in the regions of(More)
OBJECTIVE The ability to visualize median-sagittal brain structures by magnetic resonance imaging (MRI) improves the planning for surgical removal of lesions located in and around the third ventricle. The transcallosal approach is the most appropriate path to the anterior part of the third ventricle. The present study was undertaken to obtain normative(More)
1,3-Butadiene (BD) is used in the manufacture of styrene-BD and polybutadiene rubber. Differences seen in chronic toxicity studies in the susceptibility of B6C3F1 mice and Sprague-Dawley rats to BD raise the question of how to use the rodent toxicology data to predict the health risk of BD in humans. The purpose of this study was to determine if there are(More)
A decade ago, the ability of nasal tissues to metabolize inhalants was only dimly suspected. Since then, the metabolic capacities of nasal cavity tissues has been extensively investigated in mammals, including man. Aldehyde dehydrogenases, cytochrome P-450-dependent monooxygenases, rhodanese, glutathione transferases, epoxide hydrolases, flavin-containing(More)
The site of uptake of inhaled vapors profoundly influences which respiratory tract tissues receive the highest doses. How the site of uptake depends on the physicochemical properties of inhaled vapors has been the subject of experiment and speculation for decades, but remains undefined. Using techniques that distinguish between vapor uptake in the nose and(More)
Species differences in the metabolism of 1,3-butadiene (BD) have been studied in an effort to explain the major differences observed in the responses of mice, the sensitive species, and rats, the resistant species, to the toxicity of inhaled BD. BD is metabolized by the same metabolic pathways in all species studied, but there are major species differences(More)
Exposure to diesel exhaust is a suspected risk factor for human lung cancer. The carbonaceous core of the soot particles found in diesel exhaust and the condensed organic compounds adsorbed (or bound) onto the surface of the particles are both possible contributors to this suspected risk. The extent and rate at which organic procarcinogens desorb from soot(More)