Alan O. Jamison

  • Citations Per Year
Learn More
We propose and demonstrate a new approach for realizing spin-orbit coupling with ultracold atoms. We use orbital levels in a double-well potential as pseudospin states. Two-photon Raman transitions between left and right wells induce spin-orbit coupling. This scheme does not require near resonant light, features adjustable interactions by shaping the(More)
We report on the realization of a stable mixture of ultracold lithium and ytterbium atoms confined in a far-off-resonance optical dipole trap. We observe sympathetic cooling of 6Li by 174Yb and extract the s-wave scattering length magnitude |a(6Li-174Yb)|=(13±3)a0 from the rate of interspecies thermalization. Using forced evaporative cooling of 174Yb, we(More)
Supersolidity is an intriguing concept. It combines the property of superfluid flow with the long-range spatial periodicity of solids 1 , two properties which are often mutually exclusive. The original discussion of quantum crystals 2 and supersolidity focuses on solid Helium-4 where it was predicted that vacancies could form dilute weakly interacting(More)
We have developed a dual-axis ytterbium (Yb) vapor cell and used it to simultaneously address the two laser cooling transitions in Yb at wavelengths 399 nm and 556 nm, featuring the disparate linewidths of 2π × 29 MHz and 2π × 182 KHz, respectively. By utilizing different optical paths for the two wavelengths, we simultaneously obtain comparable optical(More)
Supersolidity combines superfluid flow with long-range spatial periodicity of solids, two properties that are often mutually exclusive. The original discussion of quantum crystals and supersolidity focused on solid 4He and triggered extensive experimental efforts that, instead of supersolidity, revealed exotic phenomena including quantum plasticity and mass(More)
  • 1