Learn More
As vertebrate genome sequences near completion and research refocuses to their analysis, the issue of effective genome annotation display becomes critical. A mature web tool for rapid and reliable display of any requested portion of the genome at any scale, together with several dozen aligned annotation tracks, is provided at http://genome.ucsc.edu. This(More)
A new algorithm, WABA, was developed for doing large-scale alignments between genomic DNA of different species. WABA was used to align 8 million bases of Caenorhabditis briggsae genomic DNA against the entire 97-million-base Caenorhabditis elegans genome. The alignment, including C. briggsae homologs of 154 genetically characterized C. elegans genes and(More)
We demonstrate that four different proteins from calf thymus are able to restore splicing in the same splicing-deficient extract using several different pre-mRNA substrates. These proteins are members of a conserved family of proteins recognized by a monoclonal antibody that binds to active sites of RNA polymerase II transcription. We purified this family(More)
The Intronerator (http://www.cse.ucsc.edu/ approximately kent/intronerator/ ) is a set of web-based tools for exploring RNA splicing and gene structure in Caenorhabditis elegans. It includes a display of cDNA alignments with the genomic sequence, a catalog of alternatively spliced genes and a database of introns. The cDNA alignments include >100 000 ESTs(More)
Many alternative splicing events are regulated by pentameric and hexameric intronic sequences that serve as binding sites for splicing regulatory factors. We hypothesized that intronic elements that regulate alternative splicing are under selective pressure for evolutionary conservation. Using a Wobble Aware Bulk Aligner genomic alignment of Caenorhabditis(More)
Alternative splicing of precursor messenger RNAs (pre-mRNAs) is a common mechanism of regulating gene expression. SR proteins are a family of pre-mRNA splicing factors that are structurally related and evolutionarily conserved. Any member of the SR family can complement a splicing-deficient extract that lacks the entire family of SR proteins. Here it is(More)
Alternative splicing of precursor messenger RNAs (pre-mRNAs) is an important mechanism for the regulation of gene expression. The members of the SR protein family of pre-mRNA splicing factors have distinct functions in promoting alternative splice site usage. Here we show that SR proteins are required for the first step of spliceosome assembly, interaction(More)
SR proteins are a family of proteins that have a common epitope recognized by a monoclonal antibody (MAb104) that binds active sites of polymerase II transcription. Four of the SR family members have been shown to restore activity to an otherwise splicing-deficient extract (S100 extract). Here we show that two untested SR proteins, SRp20 and SRp75, can also(More)
A naturally arising point mutation in the env gene of HIV-1 activates the aberrant inclusion of the cryptic exon 6D into most viral messages, leading to inefficient viral replication. We set out to understand how a single nucleotide substitution could cause such a dramatic change in splicing. We have determined that the exon 6D mutation promotes binding of(More)
GC-AG introns represent 0.7% of total human pre-mRNA introns. To study the function of GC-AG introns in splicing regulation, 196 cDNA-confirmed GC-AG introns were identified in Caenorhabditis elegans. These represent 0.6% of the cDNA- confirmed intron data set for this organism. Eleven of these GC-AG introns are involved in alternative splicing. In a(More)