Learn More
Programmed cell death (PCD) is an integral part of plant development and of responses to abiotic stress or pathogens. Although the morphology of plant PCD is, in some cases, well characterised and molecular mechanisms controlling plant PCD are beginning to emerge, there is still confusion about the classification of PCD in plants. Here we suggest a(More)
The phytohormone abscisic acid (ABA) promotes plant water conservation by decreasing the apertures of stomatal pores in the epidermis through which water loss occurs. We found that Arabidopsis thaliana plants harboring transferred DNA insertional mutations in the sole prototypical heterotrimeric GTP-binding (G) protein alpha subunit gene, GPA1, lack both(More)
The alpha subunit of a prototypical heterotrimeric GTP-binding protein (G protein), which is encoded by a single gene (GPA1) in Arabidopsis, is a modulator of plant cell proliferation. gpa1 null mutants have reduced cell division in aerial tissues throughout development. Inducible overexpression of GPA1 in Arabidopsis confers inducible ectopic cell(More)
Auxin-binding protein 1 (ABP1) was discovered nearly 40 years ago and was shown to be essential for plant development and morphogenesis, but its mode of action remains unclear. Here, we report that the plasma membrane-localized transmembrane kinase (TMK) receptor-like kinases interact with ABP1 and transduce auxin signal to activate plasma(More)
Auxin is a multifunctional hormone essential for plant development and pattern formation. A nuclear auxin-signaling system controlling auxin-induced gene expression is well established, but cytoplasmic auxin signaling, as in its coordination of cell polarization, is unexplored. We found a cytoplasmic auxin-signaling mechanism that modulates the(More)
Plant cells respond to low concentrations of auxin by cell expansion, and at a slightly higher concentration, these cells divide. Previous work revealed that null mutants of the alpha-subunit of a putative heterotrimeric G protein (GPA1) have reduced cell division. Here, we show that this prototypical G protein complex acts mechanistically by controlling(More)
Spatial distribution of the plant hormone auxin regulates multiple aspects of plant development. These self-regulating auxin gradients are established by the action of PIN auxin transporters, whose activity is regulated by their constitutive cycling between the plasma membrane and endosomes. Here, we show that auxin signaling by the auxin receptor(More)
G protein-coupled receptors (GPCRs) at the cell surface activate heterotrimeric G proteins by inducing the G protein alpha (Galpha) subunit to exchange guanosine diphosphate for guanosine triphosphate. Regulators of G protein signaling (RGS) proteins accelerate the deactivation of Galpha subunits to reduce GPCR signaling. Here we identified an RGS protein(More)
The heterotrimeric G-protein complex is minimally composed of Gα, Gβ, and Gγ subunits. In the classic scenario, the G-protein complex is the nexus in signaling from the plasma membrane, where the heterotrimeric G-protein associates with heptahelical G-protein-coupled receptors (GPCRs), to cytoplasmic target proteins called effectors. Although a number of(More)
Plant cells respond to low concentrations of auxin by cell expansion, and at a slightly higher concentration, these cells divide. Previous work revealed that null mutants of the ␣-subunit of a putative heterotrimeric G protein (GPA1) have reduced cell division. Here, we show that this prototypical G protein complex acts mechanistically by controlling auxin(More)