Learn More
Deep Convolutional Neural Networks (DCNNs) have recently shown state of the art performance in high level vision tasks, such as image classification and object detection. This work brings together methods from DCNNs and probabilistic graphical models for addressing the task of pixel-level classification (also called " semantic image segmentation "). We show(More)
In this work we address the task of semantic image segmentation with Deep Learning and make three main contributions that are experimentally shown to have substantial practical merit. First, we highlight convolution with upsampled filters, or 'atrous convolution', as a powerful tool in dense prediction tasks. Atrous convolution allows us to explicitly(More)
The concave-convex procedure (CCCP) is a way to construct discrete-time iterative dynamical systems that are guaranteed to decrease global optimization and energy functions monotonically. This procedure can be applied to almost any optimization problem, and many existing algorithms can be interpreted in terms of it. In particular, we prove that all(More)
We present a novel statistical and variational approach to image segmentation based on a new algorithm named region competition. This algorithm is derived by minimizing a generalized Bayes/MDL criterion using the variational principle. The algorithm is guaranteed to converge to a local minimum and combines aspects of snakes/balloons and region growing.(More)
We introduce the Concave-Convex procedure (CCCP) which constructs discrete time iterative dynamical systems which are guaranteed to monotonically decrease global optimization/energy functions. It can be applied to (almost) any optimization problem and many existing algorithms can be interpreted in terms of CCCP. In particular, we prove relationships to some(More)
In this paper, we present a multimodal Recurrent Neural Network (m-RNN) model for generating novel image captions. It directly models the probability distribution of generating a word given previous words and an image. Image captions are generated according to this distribution. The model consists of two sub-networks: a deep recurrent neural network for(More)
We present a method for estimating articulated human pose from a single static image based on a graphical model with novel pairwise relations that make adap-tive use of local image measurements. More precisely, we specify a graphical model for human pose which exploits the fact the local image measurements can be used both to detect parts (or joints) and(More)
This paper gives an algorithm for detecting and reading text in natural images. The algorithm is intended for use by blind and visually impaired subjects walking through city scenes. We first obtain a dataset of city images taken by blind and normally sighted subjects. From this dataset, we manually label and extract the text regions. Next we perform(More)
Detecting objects becomes difficult when we need to deal with large shape deformation, occlusion and low resolution. We propose a novel approach to i) handle large deformations and partial occlusions in animals (as examples of highly deformable objects), ii) describe them in terms of body parts, and iii) detect them when their body parts are hard to detect(More)