Alan J. M. Baker

Learn More
Plants that accumulate metal and metalloid trace elements to extraordinarily high concentrations in their living biomass have inspired much research worldwide during the last decades. Hyperaccumulators have been recorded and experimentally confirmed for elements such as nickel, zinc, cadmium, manganese, arsenic and selenium. However, to date,(More)
44. J. F. Caddy and R. Mahon, FAO Fish. Tech. Pap. 347 (1995). 45. Saetersdal, Rapp. P. V. Reun. Cons. Int. Explor. Mer. 177, 505 (1980); J. Caddy and J. Gulland, Mar. Policy 7, 267 (1983); V. S. Kennedy and L. L. Breisch, J. Environ. Manage. 16, 153 (1983); A. A. Rosenberg , M. J. Fogarty, M. P. Sissenwine, J. R. Beddington, J. G. Shepherd, Science 262,(More)
Whole-genome transcriptome profiling is revealing how biological systems are regulated at the transcriptional level. This study reports the development of a robust method to profile and compare the transcriptomes of two nonmodel plant species, Thlaspi caerulescens, a zinc (Zn) hyperaccumulator, and Thlaspi arvense, a nonhyperaccumulator, using Affymetrix(More)
Understanding the relative importance of the abiotic environment and species interactions in determining the distribution and abundance of organisms has been a challenge in ecological research. Serpentine substrata are stressful environments for plant growth due to multiple limitations, collectively called the "serpentine syndrome". In the present review,(More)
The perennial herb Phytolacca acinosa Roxb. (Phytolaccaceae), which occurs in Southern China, has been found to be a new manganese hyperaccumulator by means of field surveys on Mn-rich soils and by glasshouse experiments. This species not only has remarkable tolerance to Mn but also has extraordinary uptake and accumulation capacity for this element. The(More)
Metal-hyperaccumulating plants have the ability to take up extraordinary quantities of certain metal ions without succumbing to toxic effects. Most hyperaccumulators select for particular metals but the mechanisms of selection are not understood at the molecular level. While there are many metal-binding biomolecules, this review focuses only on ligands that(More)
Chemically enhanced phytoextraction is achieved by the application of chelates to soils. Using pot experiments, the effect of the combined application of EDTA and EDDS on the uptake of Cu, Pb, Zn and Cd by Zea mays L. was studied. Among the tested application ratios of 1:1, 1:2, and 2:1 (EDTA/EDDS), 2:1 of EDTA:EDDS was the most efficient ratio for(More)
Aluminium, a potentially phytotoxic metal, is an important constituent of many mine water discharges but has largely been neglected in the literature. The behaviour of this element in the rhizosphere of the wetland plant Phragmites australis was investigated in the laboratory in the presence and absence of Mn and Fe root plaques. Electron microscopy and(More)
Abandoned metalliferous mine wastes can result in severe pollution and have aesthetic impacts on the local environment. Use of a vegetation cover gives a cost-effective and environmentally sustainable method of stabilising and reclaiming wastes such as mine-spoils and tailings. Many characteristics of metalliferous wastes are often inimical to successful(More)
In recent R&D work, we have made progress in developing a commercial technology using hyperaccumulator plant species to phytoextract nickel (Ni) from contaminated and/or Ni-rich soils. An on-going program is being carried out to develop a genetically improved phytoextraction plant that combines favorable agronomic and Ni accumulation characteristics.(More)