Learn More
The actin cytoskeleton mediates a variety of essential biological functions in all eukaryotic cells. In addition to providing a structural framework around which cell shape and polarity are defined, its dynamic properties provide the driving force for cells to move and to divide. Understanding the biochemical mechanisms that control the organization of(More)
Rho and rac, two members of the ras-related superfamily of small GTPases, regulate the polymerization of actin to produce stress fibers and lamellipodia, respectively. We report here that cdc42, another member of the rho family, triggers the formation of a third type of actin-based structure found at the cell periphery, filopodia. In addition to stress(More)
Approximately one percent of the human genome encodes proteins that either regulate or are regulated by direct interaction with members of the Rho family of small GTPases. Through a series of complex biochemical networks, these highly conserved molecular switches control some of the most fundamental processes of cell biology common to all eukaryotes,(More)
Rho GTPases are molecular switches that control a wide variety of signal transduction pathways in all eukaryotic cells. They are known principally for their pivotal role in regulating the actin cytoskeleton, but their ability to influence cell polarity, microtubule dynamics, membrane transport pathways and transcription factor activity is probably just as(More)
Rho GTPases are molecular switches that regulate many essential cellular processes, including actin dynamics, gene transcription, cell-cycle progression and cell adhesion. About 30 potential effector proteins have been identified that interact with members of the Rho family, but it is still unclear which of these are responsible for the diverse biological(More)
The target of rapamycin (TOR) is a highly conserved protein kinase and a central controller of cell growth. In budding yeast, TOR is found in structurally and functionally distinct protein complexes: TORC1 and TORC2. A mammalian counterpart of TORC1 (mTORC1) has been described, but it is not known whether TORC2 is conserved in mammals. Here, we report that(More)
Cell movement is essential during embryogenesis to establish tissue patterns and to drive morphogenetic pathways and in the adult for tissue repair and to direct cells to sites of infection. Animal cells move by crawling and the driving force is derived primarily from the coordinated assembly and disassembly of actin filaments. The small GTPases, Rho, Rac,(More)
Rho GTPases control signal transduction pathways that link cell surface receptors to a variety of intracellular responses. They are best known as regulators of the actin cytoskeleton, but in addition they control cell polarity, gene expression, microtubule dynamics and vesicular trafficking. Through these diverse functions, Rho GTPases influence many(More)
We describe here a signal transduction pathway controlling the establishment of mammalian cell polarity. Scratching a confluent monolayer of primary rat astrocytes leads to polarization of cells at the leading edge. The microtubule organizing center, the microtubule cytoskeleton, and the Golgi reorganize to face the new free space, and directed cell(More)