Learn More
A recent model studies the evolution of cooperation on a network, and concludes with a result connecting the benefits and costs of interactions and the number of neighbours. Here, an inclusive fitness analysis is conducted of the only case solved analytically, of a cycle, and the identical result is obtained. This brings the result within a biologically(More)
A recent model shows that altruism can evolve with limited migration and variable group sizes, and the authors claim that kin selection cannot provide a sufficient explanation of their results. It is demonstrated, using a recent reformulation of Hamilton's original arguments, that the model falls squarely within the scope of inclusive fitness theory, which(More)
Adaptation is conventionally regarded as occurring at the level of the individual organism. However, in recent years there has been a revival of interest in the possibility for group adaptations and superorganisms. Here, we provide the first formal theory of group adaptation. In particular: (1) we clarify the distinction between group selection and group(More)
The Darwin unification project is pursued. A meta-model encompassing an important class of population genetic models is formed by adding an abstract model of the number of successful gametes to the Price equation under uncertainty. A class of optimization programs are defined to represent the "individual-as-maximizing-agent analogy" in a general way. It is(More)
Hamilton's rule explains when natural selection will favor altruism between conspecifics, given their degree of relatedness. In practice, indicators of relatedness (such as scent) coevolve with strategies based on these indicators, a fact not included in previous theories of kin recognition. Using a combination of simulation modeling and mathematical(More)
Many approaches to the study of adaptation, following Darwin, centre on the number of offspring of individuals. Population genetics theory makes clear that predicting gene frequency changes requires more detailed knowledge, for example of linkage and linkage disequilibrium and mating systems. Because gene frequency changes underlie adaptation, this can lead(More)