Learn More
We have, in the last few years, witnessed the development and availability of an ever increasing number of computer models that describe complex biological structures and processes. The multi-scale and multi-physics nature of these models makes their development particularly challenging, not only from a biological or biophysical viewpoint but also from a(More)
Cardiac modelling is the area of physiome modelling where the available simulation software is perhaps most mature, and it therefore provides an excellent starting point for considering the software requirements for the wider physiome community. In this paper, we will begin by introducing some of the most advanced existing software packages for simulating(More)
BACKGROUND CellML is an XML based language for representing mathematical models, in a machine-independent form which is suitable for their exchange between different authors, and for archival in a model repository. Allowing for the exchange and archival of models in a computer readable form is a key strategic goal in bioinformatics, because of the(More)
a r t i c l e i n f o a b s t r a c t Chaste ('Cancer, heart and soft-tissue environment') is a software library and a set of test suites for computational simulations in the domain of biology. Current functionality has arisen from modelling in the fields of cancer, cardiac physiology and soft-tissue mechanics. It is released under the LGPL 2.1 licence.(More)
We investigate acute effects of axial stretch, applied by carbon fibers (CFs), on diastolic Ca2+ spark rate in rat isolated cardiomyocytes. CFs were attached either to both cell ends (to maximize the stretched region), or to the center and one end of the cell (to compare responses in stretched and nonstretched half-cells). Sarcomere length was increased by(More)
Ongoing developments in cardiac modelling have resulted, in particular, in the development of advanced and increasingly complex computational frameworks for simulating cardiac tissue electrophysiology. The goal of these simulations is often to represent the detailed physiology and pathologies of the heart using codes that exploit the computational potential(More)
MOTIVATION The Physiome Model Repository 2 (PMR2) software was created as part of the IUPS Physiome Project (Hunter and Borg, 2003), and today it serves as the foundation for the CellML model repository. Key advantages brought to the end user by PMR2 include: facilities for model exchange, enhanced collaboration and a detailed change history for each model.(More)
Reproducibility of experiments is a basic requirement for science. Minimum Information (MI) guidelines have proved a helpful means of enabling reuse of existing work in modern biology. The Minimum Information Required in the Annotation of Models (MIRIAM) guidelines promote the exchange and reuse of biochemical computational models. However, information(More)
Simulating the human heart is a challenging problem, with simulations being very time consuming---some can take days to compute even on high performance computing resources. There is considerable interest in optimisation techniques, with a view to making whole-heart simulations tractable. Reliability of heart model simulations is also of great concern,(More)
BACKGROUND Building repositories of computational models of biological systems ensures that published models are available for both education and further research, and can provide a source of smaller, previously verified models to integrate into a larger model. One problem with earlier repositories has been the limitations in facilities to record the(More)