Learn More
The development of chronic allograft rejection is based on the hypothesis that cumulative, time-dependent tissue injury eventually leads to a fibrotic response. In this issue of the JCI, Babu and colleagues found that alloimmune-mediated microvascular loss precedes tissue damage in murine orthotopic tracheal allografts (see the related article beginning on(More)
The development of cancer is a major problem in immunosuppressed patients, particularly after solid organ transplantation. We have recently shown that calcineurin inhibitors (CNI) used to treat transplant patients may play a critical role in the rapid progression of renal cancer. To examine the intracellular signaling events for CNI-mediated direct(More)
Cancer is an increasing and major problem after solid organ transplantation. In part, the increased cancer risk is associated with the use of immunosuppressive agents, especially calcineurin inhibitors. We propose that the effect of calcineurin inhibitors on the expression of vascular endothelial growth factor (VEGF) leads to an angiogenic milieu that(More)
In this review, we discuss how changes in the intragraft microenvironment serve to promote or sustain the development of chronic allograft rejection. We propose two key elements within the microenvironment that contribute to the rejection process. The first is endothelial cell proliferation and angiogenesis that serve to create abnormal microvascular blood(More)
Differential Enhancement of Breast Cancer Cell Motility and Metastasis by Helical and Kinase Domain Mutations of Class IA Phosphoinositide 3-Kinase. Huan Pang, Rory Flinn, Antonia Patsialou, Jeffrey Wyckoff, Evanthia T. Roussos, Haiyan Wu, Maria Pozzuto, Sumanta Goswami, John S. Condeelis, Anne R. Bresnick, Jeffrey E. Segall, and Jonathan M. Backer(More)
Calcineurin inhibitors (CNI) are used to prevent inflammatory diseases and allograft rejection. However, little is known about the mechanism(s) underlying their ability to promote the development and recurrence of cancer. Recent studies suggested that the chemokine receptor CXCR3 may play important roles in tumorigenesis. CXCR3 has two splice variants with(More)
We have examined CD40-dependent signals in endothelial cells (EC) mediating the expression of vascular endothelial growth factor (VEGF) and VEGF-induced angiogenesis. We treated confluent cultures of EC with soluble CD40L (sCD40L), and by Western blot found a marked increase in the phosphorylation of Akt, 4EBP-1, and S6K1, compared with untreated cells. EC(More)
The target of rapamycin (TOR) is a highly conserved serine/threonine kinase that controls cell growth and metabolism in response to nutrients, growth factors, cellular energy, and stress. The TOR kinase, which was originally discovered in yeast, is also expressed in human cells as mammalian TOR (mTOR). In this review, we focus on how mTOR-inducible signals(More)
Malignancy is a major problem in patients treated with immunosuppressive agents. We have demonstrated that treatment with calcineurin inhibitors (CNIs) can induce the activation of proto-oncogenic Ras, and may promote a rapid progression of human renal cancer through the overexpression of vascular endothelial growth factor (VEGF). Interestingly, we found(More)
UNLABELLED Sensitization to HLA antigens creates an obstacle for the accessibility and success of kidney transplantation (KT). Highly sensitized patients have longer waiting times and some may never receive a KT. AIM To determine the probability of patients on the deceased donor (DD) waiting list to receive a KT based on the panel reactive antibody(More)