Alan G. Gittis

Learn More
The structure of a highly conserved complex between a 58-nucleotide domain of large subunit ribosomal RNA and the RNA-binding domain of ribosomal protein L11 has been solved at 2.8 angstrom resolution. It reveals a precisely folded RNA structure that is stabilized by extensive tertiary contacts and contains an unusually large core of stacked bases. A bulge(More)
A glutamic acid was buried in the hydrophobic core of staphylococcal nuclease by replacement of Val-66. Its pK(a) was measured with equilibrium thermodynamic methods. It was 4.3 units higher than the pK(a) of Glu in water. This increase was comparable to the DeltapK(a) of 4.9 units measured previously for a lysine buried at the same location. According to(More)
Deletion of six amino acids in a surface loop transforms staphylococcal nuclease from a monomeric protein into a very stable dimer (Kd < 1 x 10(-8)M). A 2 A X-ray crystal structure of the dimer (R = 0.176) shows that the carboxy-terminal alpha-helix has been stripped from its normal position in one monomer and is now incorporated into the equivalent(More)
The solution secondary structure of the highly active Y55F/Y88F "Tyr-14-only" mutant of delta 5-3-ketosteroid isomerase complexed with 19-nortestosterone hemisuccinate has been shown to consist of three helices, a six-stranded mixed beta-sheet, and five turns. The steroid binds near the general acid, Tyr-14, on helix 1, near the general base, Asp-38, on the(More)
The crystal structure of the staphylococcal nuclease mutant V66K, in which valine 66 is replaced by lysine, has been solved at 1.97 A resolution. Unlike lysine residues in previously reported protein structures, this residue appears to bury its side-chain in the hydrophobic core without salt bridging, hydrogen bonding or other forms of electrostatic(More)
Protein crystals are usually obtained by an empirical approach based on extensive screening to identify suitable crystallization conditions. In contrast, we have used a systematic predictive procedure to produce data-quality crystals of bovine chymotrypsinogen A and used them to obtain a refined X-ray structure to 3 A resolution. Measurements of the osmotic(More)
Similar folds often occur in proteins with dissimilar sequences. The OB-fold forms a part of the structures of at least seven non-homologous proteins that share either oligonucleotide or oligosaccharide binding functions. A 1-103 fragment corresponding to the OB-fold of the 149 amino acid residue staphylococcal nuclease gives NMR spectra characteristic of(More)
The dielectric inside a protein is a key physical determinant of the magnitude of electrostatic interactions in proteins. We have measured this dielectric phenomenologically, in terms of the dielectric that needs to be used with the Born equation in order to reproduce the observed pKa shifts induced by burial of an ionizable group in the hydrophobic core of(More)
The solution structure of the ketosteroid isomerase homodimer complexed with the product analogue 19-nortestosterone hemisuccinate (19-NTHS) was solved by heteronuclear multidimensional NMR methods using 1647 distance restraints, 77 dihedral angle (phi) restraints, and 67 hydrogen bond restraints per monomer. The refined secondary structure of each subunit(More)