Learn More
Evoked transmitter release depends upon calcium influx into synaptic boutons, but mechanisms regulating bouton calcium levels and spontaneous transmitter release are obscure. To understand these processes better, we monitored calcium transients in axons and presynaptic terminals of pyramidal neurons in hippocampal slice cultures. Action potentials reliably(More)
We have used confocal microscopy to monitor synaptically evoked Ca2+ transients in the dendritic spines of hippocampal pyramidal cells. Individual spines respond to single afferent stimuli (<0.1 Hz) with Ca2+ transients or failures, reflecting the probability of transmitter release at the activated synapse. Both AMPA and NMDA glutamate receptor antagonists(More)
Green fluorescent protein (hGFP-S65T) was expressed in transgenic mice under the control of the astrocyte-specific glial fibrillary acidic protein (GFAP) promoter. Tissues from two independent transgenic lines were characterized by Northern blot analysis and by confocal microscopy. The expression pattern in these two lines was identical in all tissues(More)
The mechanisms by which long-term potentiation (LTP) is expressed are controversial, with evidence for both presynaptic and postsynaptic involvement. We have used confocal microscopy and Ca(2+)-sensitive dyes to study LTP at individual visualized synapses. Synaptically evoked Ca(2+) transients were imaged in distal dendritic spines of pyramidal cells in(More)
Under some conditions, synaptically released glutamate can exert long-range actions in the cortical microcircuitry. To what extent glutamate spillover leads to direct cross talk among individual synapses remains unclear. We recorded NMDAR-mediated EPSCs in acute hippocampal slices at 35 degrees C by stimulating two independent pathways that converge on the(More)
Synaptic activation is associated with rapid changes in intracellular Ca(2+), while the extracellular Ca(2+) level is generally assumed to be constant. Here, using a novel optical method to measure changes in extracellular Ca(2+) at high spatial and temporal resolution, we find that brief trains of synaptic transmission in hippocampal area CA1 induce(More)
Heart failure remains a leading cause of morbidity and mortality. The cellular mechanism underlying the development of cardiac dysfunction is a decrease in the number of viable cardiomyocytes. Recent observations have suggested that the adult heart may contain a progenitor cell population. Side population (SP) cells, characterized by a distinct Hoechst dye(More)
Key aspects of the expression of long-term potentiation (LTP) and long-term depression (LTD) remain unresolved despite decades of investigation. Alterations in postsynaptic glutamate receptors are believed to contribute to the expression of various forms of LTP and LTD, but the relative importance of presynaptic mechanisms is controversial. In addition,(More)
The somatosensory (SI) cortex of mice displays a patterned, nonuniform distribution of neurons in layer IV called the 'barrelfield' (ref. 1). Thalamocortical afferents (TCAs) that terminate in layer IV are segregated such that each barrel, a readily visible cylindrical array of neurons surrounding a cell-sparse center, represents a distinct receptive field.(More)
Odor molecules are transduced by thousands of olfactory sensory neurons (OSNs) located in the nasal cavity. Each OSN expresses a single functional odorant receptor protein and projects an axon from the sensory epithelia to an olfactory bulb glomerulus, which is selectively innervated by only one or a few OSN types. We used whole-mount immunocytochemistry to(More)