Learn More
We previously reported that epidermal growth factor (EGF) induced the disruption of gap junctional communication (gjc) and serine phosphorylation of connexin43 (Cx43) in T51B rat liver epithelial cells. However, the cascade of events linking EGF receptor activation to these particular responses have not been fully characterized. Furthermore, the serine(More)
Phorbol esters (e.g., TPA) activate protein kinase C (PKC), increase connexin43 (Cx43) phosphorylation, and decrease cell-cell communication via gap junctions in many cell types. We asked whether PKC directly phosphorylates and regulates Cx43. Rat epithelial T51B cells metabolically labeled with (32)P(i) yielded two-dimensional phosphotryptic maps of Cx43(More)
Connexin43(Cx43) channels can be regulated by a variety of factors, including low pHi. Structure/function studies from this laboratory have demonstrated that pH gating follows a particle-receptor mechanism, similar to the "ball-and-chain" model of voltage-dependent inactivation of ion channels. The question whether the particle-receptor model is applicable(More)
Immortalized cells from embryonic connexin43 knockout mice (Cx43-/-) and homozygous littermates (Cx43+/+) were cloned and characterized to determine whether the absence of Cx43 function would induce observable phenotypic changes. Cells of the Cx43+/+ clones expressed Cx43 and engaged in gap junctional communication with 10-12 neighboring cells. The Cx43-/-(More)
Structure/function analysis shows that the carboxyl terminal (CT) domain of connexin43 (Cx43) is essential for the chemical regulation of cell-cell communication. Of particular interest is the region between amino acids 260 and 300. Structural preservation of this region is essential for acidification-induced uncoupling (ie, pH gating). In this study, we(More)
HI 96813 cently, with colorectal cancer (8). Thus, it is conceivable that PAHs play a role in some of the genetic alterations leading to colorectal tumor development. CYP1A1 is of critical importance for the metabolism of PAHs. The gene product, AHH, initiates a multienzyme pathway that converts PAHs to their ultimate DNA-binding carcinogenic forms. A MspI(More)
The mechanism by which v-Src disrupts connexin (Cx)43 intercellular gap junctional communication (GJC) is not clear. In this study, we determined that Tyr247 (Y247) and the previously identified Tyr265 (Y265) site of Cx43 were the primary phosphorylation targets for activated Src in vitro. We established an in vivo experimental system by stably expressing(More)
Connexin (Cx)43 gap junction channels are phosphorylated by numerous protein kinases, with the net effect typically being a reduction in gap junction communication (GJC). This reduction must result from a decrease in channel open probability, unitary conductance, or permselectivity, because previous results suggest that channel number is unaffected.(More)
Connexins comprise gap junction channels, which create a direct conduit between the cytoplasms of adjacent cells and provide for intercellular communication. Therefore, the level of total cellular connexin protein can have a direct influence on the level of intercellular communication. Control of connexin protein levels can occur through different(More)
Platelet-derived growth factor (PDGF) induction of DNA synthesis is believed to involve activation of phospholipase C (PLC) and subsequent accumulation of inositol 1,4,5-triphosphate [I(1,4,5)P3], increase in intracellular Ca2+, activation of protein kinase C (PKC), and receptor down regulation. Generation of these events is triggered by the tyrosine(More)