Alan F. Beardon

Learn More
Let {x k,n } n k=1 and {x k,n+1 } n+1 k=1 , n ∈ N, be two given sets of real distinct points with x 1,n+1 < x 1,n < x 2,n+1 < · · · < x n,n < x n+1,n+1. Wendroff (cf. [3]) proved that if p n (x) = n k=1 (x − x k,n) and p n+1 (x) = n+1 k=1 (x − x k,n+1) then p n and p n+1 can be embedded in a non-unique infinite monic orthogonal sequence {p n } ∞ n=0. We(More)
  • 1