Learn More
Virus particles are probably the most precisely defined nanometre-sized objects that can be formed by protein self-assembly. Although their natural function is the storage and transport of genetic material, they have more recently been applied as scaffolds for mineralization and as containers for the encapsulation of inorganic compounds. The reproductive(More)
In this study we report the immobilization of enzyme-containing polymersomes into a macromolecular hydrogel. Whereas free enzyme shows progressive leakage from the hydrogel in a period of days, leakage of the polymersome-protected enzyme is virtually absent. The preparation of the hydrogel occurs under mild conditions and does not inhibit the activity of(More)
Single-molecule techniques offer a unique tool for studying the dynamical behavior of individual molecules and provide the possibility to construct distributions from individual events rather than from a signal stemming from an ensemble of molecules. In biological systems, known for their complexity, these techniques make it possible to gain insights into(More)
Most enzyme studies are carried out in bulk aqueous solution, at the so-called ensemble level, but more recently studies have appeared in which enzyme activity is measured at the level of a single molecule, revealing previously unseen properties. To this end, enzymes have been chemically or physically anchored to a surface, which is often disadvantageous(More)
A generic method is described for the fluorescence "readout" of the activity of single redox enzyme molecules based on Förster resonance energy transfer from a fluorescent label to the enzyme cofactor. The method is applied to the study of copper-containing nitrite reductase from Alcaligenes faecalis S-6 immobilized on a glass surface. The parameters(More)
The potential of single-enzyme studies to unravel the complex energy landscape of these polymeric catalysts is the next critical step in enzymology. From its inception in Rotman's emulsion experiments in the 1960s, the field of single-molecule enzymology has now advanced into the time-resolved age. Technological advances have enabled individual enzymatic(More)