Learn More
—Massive MIMO systems can greatly increase spectral and energy efficiency over traditional MIMO systems by exploiting large antenna arrays. However, increasing the number of antennas at the base station (BS) makes the uplink noncoherent data detection very challenging in massive MIMO systems. In this paper we consider the joint maximum likelihood (ML)(More)
Massive MIMO systems have made significant progress in increasing spectral and energy efficiency over traditional MIMO systems by exploiting large antenna arrays. In this paper we consider the joint maximum likelihood (ML) channel estimation and data detection problem for massive SIMO (single input multiple output) wireless systems. Despite the large number(More)
—Massive MIMO communication systems, by virtue of utilizing very large number of antennas, have a potential to yield higher spectral and energy efficiency in comparison with the conventional MIMO systems. In this paper, we consider uplink channel estimation in massive MIMO-OFDM systems with frequency selective channels. With increased number of antennas,(More)
This paper investigates the joint maximum likelihood (ML) data detection and channel estimation problem for Alamouti space-time block-coded (STBC) orthogonal frequency-division multiplexing (OFDM) wireless systems. The joint ML estimation and data detection is generally considered a hard combinatorial optimization problem. We propose an efficient(More)
  • 1