Learn More
We introduce two new schemes for securely computing Ham-ming distance in the two-party setting. Our first scheme is a very efficient protocol, based solely on 1-out-of-2 Oblivious Transfer, that achieves full security in the semi-honest setting and one-sided security in the malicious setting. Moreover we show that this protocol is significantly more(More)
Recently, Dziembowski et al. introduced the notion of non-malleable codes (NMC), inspired from the notion of non-malleability in cryptography and the work of Gennaro et al. in 2004 on tamper proof security. Informally, when using NMC, if an attacker modifies a codeword, decoding this modified codeword will return either the original message or a completely(More)
The distribution of the 2 main types (A and B) of 5-HT1 binding sites in the rat brain was studied by light-microscopic quantitative autoradiography. The 5-HT1A sites were identified using 3H-8-hydroxy-2-(N-dipropylamino)tetralin (3H-8-OH-DPAT) or 3H-5-HT as the ligand. In the latter case, it was shown that 3H-5-HT binding to 5-HT1A sites corresponded to(More)
At WAHC'13, Bringer et al. introduced a protocol called SHADE for secure and efficient Hamming distance computation using oblivious transfer only. In this paper, we introduce a generalization of the SHADE protocol, called GSHADE, that enables privacy-preserving computation of several distance metrics, including (normalized) Hamming distance, Euclidean(More)
n SMC is a set of cryptographic techniques that enable several parties to jointly compute a function over their inputs, while at the same time keeping these inputs private. n In the last 3 years, a dozen of applications of SMC to privacy-preserving biometric identification have been proposed. n Main advantage: Full Privacy / Drawback: Efficiency. n Even(More)