Alaa S. Tulbah

Learn More
Simvastatin (SV), a drug of the statin class currently used orally as an anti-cholesterolemic via the inhibition of the 3-hydroxy-3-methyl-glutaryl-Coenzyme A (HMG-CoA) reductase, has been found not only to reduce cholesterol but also to have several other pharmacological actions that might be beneficial in airway inflammatory diseases. Currently, there is(More)
OBJECTIVES This study focuses on the development of a dry powder inhaler (DPI) formulation of simvastatin (SV), and the effects of SV on the respiratory epithelium. METHODS Micronised SV samples were prepared by dry jet-milling. The long-term chemical stability and physicochemical properties of the formulations were characterised in terms of particles(More)
AIM Current inhaled treatments are not adequate to treat all lung diseases. In this study, a promising nanotechnology has been developed to deliver a potential anti-inflammatory and muco-inhibitory compound, simvastatin, for treatment of inflammatory lung diseases via inhalation. MATERIALS & METHODS Simvastatin nanoparticles (SV-NPs) encapsulated with(More)
INTRODUCTION Simvastatin (SV) is a drug from the statin class, currently used orally as an anti-cholesterolemic drug. It inhibits the 3-hydroxy-3-methyl-glutaryl-Coenzyme A (HMG-CoA) reductase to reduce cholesterol synthesis. Recently, it has been found that SV also has several other protective pharmacological actions unrelated to its anti-cholesterol(More)
The aim of this study is to evaluate the biological effects of Calu-3 epithelial cells in response to the delivery of simvastatin (SV) via solution pressurized metered dose inhaler (pMDI). SV pMDI was aerosolised onto Calu-3 air-interface epithelial cells using a modified glass twin stage impinger. The transport of SV across Calu-3 cells, mucus production,(More)
  • 1