Akshit Chopra

Learn More
The intradiskal surface of the transmembrane protein, rhodopsin, consists of the amino terminal domain and three loops connecting six of the seven transmembrane helices. This surface corresponds to the extracellular surface of other G-protein receptors. Peptides that represent each of the extramembraneous domains on this surface (three loops and the amino(More)
Low resolution electron density maps have revealed the general orientation of the transmembrane helices of rhodopsin. However, high resolution structural information for the transmembrane domain of the G-protein-coupled receptor, rhodopsin, is as yet unavailable. In this study, a high resolution solution structure is reported for a 15 residue portion of the(More)
An hypothesis is tested that individual peptides corresponding to the transmembrane helices of the membrane protein, rhodopsin, would form helices in solution similar to those in the native protein. Peptides containing the sequences of helices 1, 4 and 5 of rhodopsin were synthesized. Two peptides, with overlapping sequences at their termini, were(More)
The visual extent of an object reaches beyond the object itself. It is reflected in image retrieval techniques which combine statistics from the whole image in order to identify the image within. Nevertheless, it is still unclear to what degree and how this visual extent of an object affects the classification performance. Here we analyze the visual extent(More)
R. Arnold, C. Augier, J.D. Baker, ∗ A.S. Barabash, A. Basharina-Freshville, S. Blondel, S. Blot, M. Bongrand, V. Brudanin, 8 J. Busto, A.J. Caffrey, S. Calvez, M. Cascella, C. Cerna, J.P. Cesar, A. Chapon, E. Chauveau, A. Chopra, D. Duchesneau, D. Durand, V. Egorov, G. Eurin, 5 J.J. Evans, L. Fajt, D. Filosofov, R. Flack, X. Garrido, H. Gómez, B. Guillon,(More)
  • 1