Akshay Kale

Learn More
Reservoir-based dielectrophoresis (rDEP) is a recently developed technique that exploits the inherent electric field gradients at a reservoir-microchannel junction to focus, trap, and sort particles. However, the locally amplified electric field at the junction is likely to induce significant Joule heating effects that are not considered in previous(More)
Insulator-based DEP (iDEP) has been established as a powerful tool for manipulating particles in microfluidic devices. However, Joule heating may become an issue in iDEP microdevices due to the local amplification of electric field around the insulators. This results in an electrothermal force that can manifest itself in the flow field in the form of(More)
Trapping and preconcentrating particles and cells for enhanced detection and analysis are often essential in many chemical and biological applications. Existing methods for diamagnetic particle trapping require the placement of one or multiple pairs of magnets nearby the particle flowing channel. The strong attractive or repulsive force between the magnets(More)
Electrokinetic manipulation refers to the control of particle and cell motions using an electric field. It is an efficient technique for microfluidic applications with the ease of operation and integration. It, however, suffers from an intrinsic drawback of low throughput due to the linear dependence of the typically very low fluid permittivity. We(More)
Electroosmotic flow is the transport method of choice in microfluidic devices over traditional pressure-driven flow. To date, however, studies on electroosmotic flow have been almost entirely limited to inside microchannels. This work presents the first experimental study of Joule heating effects on electroosmotic fluid entry from the inlet reservoir (i.e.,(More)
Insulator-based dielectrophoresis (iDEP) exploits in-channel hurdles and posts etc. to create electric field gradients for various particle manipulations. However, the presence of such insulating structures also amplifies the Joule heating in the fluid around themselves, leading to both temperature gradients and electrothermal flow. These Joule heating(More)
  • 1