Akram Yazdani

Learn More
BACKGROUND & OBJECTIVES Verotoxigenic Escherichia coli are important serotypes of enterohaemorrhagic E. coli (EHEC) subgroup that cause attaching and effacing lesions in enterocytes by producing verotoxins or shiga-like toxins resulting in haemorrhagic colitis (HC) and haemolytic uremic syndrome (HUS). The aim of this study was to detect these serotypes(More)
Understanding causal relationships among large numbers of variables is a fundamental goal of biomedical sciences and can be facilitated by Directed Acyclic Graphs (DAGs) where directed edges between nodes represent the influence of components of the system on each other. In an observational setting, some of the directions are often unidentifiable because of(More)
Plasma triglyceride levels are a risk factor for coronary heart disease. Triglyceride metabolism is well characterized, but challenges remain to identify novel paths to lower levels. A metabolomics analysis may help identify such novel pathways and, therefore, provide hints about new drug targets. In an observational study, causal relationships in the(More)
We use whole genome sequence data and rare variant analysis methods to investigate a subset of the human serum metabolome, including 16 carnitine-related metabolites that are important components of mammalian energy metabolism. Medium pass sequence data consisting of 12,820,347 rare variants and serum metabolomics data were available on 1,456 individuals.(More)
Availability of affordable and accessible whole genome sequencing for biomedical applications poses a number of statistical challenges and opportunities, particularly related to the analysis of rare variants and sparseness of the data. Although efforts have been devoted to address these challenges, the performance of statistical methods for rare variants(More)
Untargeted metabolomics, measurement of large numbers of metabolites irrespective of their chemical or biologic characteristics, has proven useful for identifying novel biomarkers of health and disease. Of particular importance is the analysis of networks of metabolites, as opposed to the level of an individual metabolite. The aim of this study is to(More)
Fatty acids are important sources of energy and possible predictors and etiologic factors in many common complex pathologies such as cardiovascular disease, diabetes, and certain forms of cancers. While fatty acids are thought to covary with each other, their underlying causal networks have not been fully elucidated. This study reports the identification(More)
  • 1