Akouavi M Ezin

Learn More
We have characterized excisional wounds in the animal cap of early embryos of the frog Xenopus laevis and found that these wounds close accompanied by three distinct processes: (1) the assembly of an actin purse-string in the epithelial cells at the wound margin, (2) contraction and ingression of exposed deep cells, and (3) protrusive activity of epithelial(More)
In contrast to the classical assumption that neural crest cells are induced in chick as the neural folds elevate, recent data suggest that they are already specified during gastrulation. This prompted us to map the origin of the neural crest and dorsal neural tube in the early avian embryo. Using a combination of focal dye injections and time-lapse imaging,(More)
The capacity to image a growing embryo while simultaneously studying the developmental function of specific molecules provides invaluable information on embryogenesis. However, until recently, this approach was accomplished with difficulty both because of the advanced technology needed and because an easy method of minimizing damage to the embryo was(More)
We investigated the role of the dorsal midline structures, the notochord and notoplate, in patterning the cell motilities that underlie convergent extension of the Xenopus neural plate. In explants of deep neural plate with underlying dorsal mesoderm, lateral neural plate cells show a monopolar, medially directed protrusive activity. In contrast, neural(More)
In previous work (Elul, T., Keller, R., 2000. Monopolar protrusive activity: a new morphogenic cell behavior in the neural plate dependent on vertical interactions with the mesoderm in Xenopus. Dev. Biol. 224, 3-19; Ezin, A.M., Skoglund, P. Keller, R. 2003. The midline (notochord and notoplate) patterns the cell motility underlying convergence and extension(More)
The cardiac neural crest (arising from the level of hindbrain rhombomeres 6-8) contributes to the septation of the cardiac outflow tract and the formation of aortic arches. Removal of this population after neural tube closure results in severe septation defects in the chick, reminiscent of human birth defects. Because neural crest cells from other axial(More)
  • 1