Learn More
Mass spectrometric analysis of biomolecules under ambient conditions promises to enable the in vivo investigation of diverse biochemical changes in organisms with high specificity. Here we report on a novel combination of infrared laser ablation with electrospray ionization (LAESI) as an ambient ion source for mass spectrometry. As a result of the(More)
Atmospheric pressure imaging mass spectrometry is a rapidly expanding field that offers advantages in the ability to study biological systems in their native condition, simplified sample preparation, and high-throughput experiments. In laser ablation electrospray ionization (LAESI), the native water molecules in biological tissues facilitate sampling by a(More)
Human T-lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis. The HTLV-1 transactivator protein Tax controls many critical cellular pathways, including host cell DNA damage response mechanisms, cell cycle progression, and apoptosis. Extracellular vesicles called(More)
The utility of atmospheric pressure infrared MALDI mass spectrometry (AP IR-MALDI) was assessed for plant metabolomics studies. Tissue sections from plant organs, including flowers, ovaries, aggregate fruits, fruits, leaves, tubers, bulbs, and seeds were studied in both positive and negative ion modes. For leaves, single laser pulses sampled the cuticle and(More)
Mass spectrometry in conjunction with atmospheric pressure ionization methods enables the in vivo investigation of biochemical changes with high specificity and sensitivity. Laser ablation electrospray ionization (LAESI) is a recently introduced ambient ionization method suited for the analysis of biological samples with sufficient water content. With LAESI(More)
Recent technical innovations in mass spectrometry (MS) have extended the application of this powerful technique to direct chemical analysis at atmospheric pressure. These innovations have created an opportunity to appreciate the chemistry of biological systems in their native state, so tissues and single cells of plant, animal, or human origin can be(More)
Mid-infrared laser ablation of water-rich targets at the maximum of the 2.94 μm absorption band is a two-step process initiated by phase explosion followed by recoil pressure induced material ejection. Particulates and/or droplets ejected by this high temperature high pressure process can be ionized for mass spectrometry by charged droplets from an(More)
The neuromuscular junction (NMJ), where a motor neuron intercepts and activates a muscle fiber, is a highly versatile and complex subcellular region. Genomic and proteomic approaches using the large (>1 kg) electric organ of Torpedo californica have helped advancing our understanding of this minute (30–50 μm) electric synapse. However, the majority of these(More)
Laser-induced silicon microcolumn arrays (LISMA) were developed as matrix-free substrates for soft laser desorption/ionization mass spectrometry (SLDI-MS). When low-resistivity silicon wafers were irradiated in air, sulfur hexafluoride, or water environment with multiple pulses from a 3 x omega mode-locked Nd:YAG laser, columnar structures were formed on(More)