Akiyuki Hasegawa

Learn More
Japanese common newts (Cynops pyrrhogaster) have high ability to regenerate their injured organs including neural tissues, for example, the neural retina belonging to central nervous system. We attempted to clarify the molecular mechanism underlying the formation of a neural network during newt retina regeneration, and focused on the microtubule dynamics(More)
— In this paper, we presented a design for an automated cell supply system that can be used with complex microfluidic applications requiring single cell loading such as the current nuclear transplantation method. The aim of the system is to automatically transfer mammalian donor (∼15µm) or egg (∼100µm) cells one by one from a container to a PDMS(More)
Unlike other vertebrates, teleosts have rod- and cone-specific phosducins (PD-R and PD-C) in the retina. To evaluate the teleost Gbetagamma-PD systems, we isolated cDNAs encoding medaka Gbeta1 and GbetaC, which selectively expressed rods and cones. Immunohistochemical studies showed that the strong reactivity of GbetaC but not PD-C was detected in cone(More)
  • 1